IRON, RUTHENIUM AND OSMIUM

Annual Survey Covering the Year 1975*

JON A. McCLEVERTY

Chemistry Department, The University, Sheffield S3 7HF (Great Britain)

<u>Contents</u>

Metal	Carbony	ls	••	••	••	••	••	••	••		••	••	2
	Simple c	arbonyl	s and	carb	onylat	te ani	ons	••	••	• •	••	• •	2
	Monomeri	c speci	es co	ntair	ing G	roup V	/ dono	or ato	oms	••	••	••	4
	Alkyl, a	cyl and	carb	ene c	omples	xes	••	••	••	••	••	••	5
	Complexe	s with	Group	נעו	igands	5	••	••	••	• •	••	••	7
1	Metal com	mplexes	of m	acroc	yclic	nitro	gen]	Ligand	ls			••	8
	Dithiofo	rmate c	omple	xes,	fixat:	ion of	: co_	by ph	osphi	ine d	comple	exes,	,
1	dithioca	rbamate	and	dithi	olene	compo	ounds	••	••	••	••	••	10
]	Eydrides	and ha	lide	compl	exes	••	••	• •	••			• • •	11
1	Metal(II) phosp	hine	compl	exes	••	• •	• -	••	••		••	12
3	Bimetall	ic spec	ies	••	••	••	••	••	- •	••	••	••	20
1	Trimetal	lic and	othe	r met	al ato	om clu	ster	compo	ounds	••	••	••	38
Metal	Isocyan	ides	••	••	••	••	••	••	••	••		• •	55
(Carbene :	species	deri	ved f	rom is	sceyar	ide o	comple	exes	••			57
Phosp	hine and	Phosph	ite	•••	••	••		••		••	••	••	57
Metal	Nitrosy	l and A	ryldi	azo C	ompley	œs	••	••		••	••		58
1	Mononitro	osyl com	mpoun	ds				••	••		.		58
]	Dinitros	yl comp	lexes			••	••	••	••	••		••	63
1	Thionitro	osyl, m	itrou	s oxi	de and	i nitr	ogen	compl	exes	••	••	••	65
i.	Aryldiazo	o comple	exes		••				••		••	••	65
Mono-(Olefin Co	orplexes	s		••	••	••	••	••	••	••	. 	68
Allyl	Complexe	es	••		••	••		••					75
1	Mono-ally	vlic sp	ecies		••	••		••		••	••		75
Cyclo	butadiene	e and Th	rimetl	nylen	emethe	une Co	molex	es					85
Diene	Metal Co	omolexe	5										88
_	Acvelie	nono-di	ene co	נוסמותר	nds								. 88
-	Acvelie 1	ois-die	ne cor	molex	es		••				••	••	94
-	Cvelie w	lvolef	in cor	mlev	es		- -	- •		••	• •	••	0×
Dienvi	l Complet	res				••	•••	••	••	••	••	••	107
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- combres		••	• •	••	••	• •	••	••	• •	• •	••	TOT

* Iron, ruthenium and osmium, Annual Survey covering the year 1974 see J. Organometal. Chem., Vol. 119(1976) p.261-405. Reprints not available.

•

가는 승규는 사람이 가지 않는 것 같아요. 이 것은 동안을 가장하는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 같아.	
Cyclopentadienyl Compounds	. 114
Binuclear carbonyl complexes	. 114
Hydrido species	. 120
Isocyanide and carbene species	. 123
Olerin, allene and related complexes	. 123
Species containing M-C o-bonds	. 129
Geometrical and optical isomerisation at M-C bonds	. 134
Cleavage of, and insertion into, M-C bonds	. 135
Carbonylation and decarbonylation reactions	. 141
Compounds containing Group IV elements other than carbon .	. 141
Complexes containing Group V ligands	. 146
Compounds containing sulphur	. 150
Halide compounds	. 152
Compounds containing Group II metals	• 152
Arene Metal Complexes	. 153
$\eta^5$ -Cyclopentadienyl iron compounds	. 153
Ruthenium arene complexes	155
Complexes containing heterocyclic ligands	. 155
Metal Atoms Incorporated in Boron Cages	. 156
Compounds Containing Metal-Carbon Sigma Fonds	158
Synthetic and Catalytic Reactions	159
Synthetic processes	. 159
Hydrogenation and dehydrogenation	. 161
Isomerisation and H/D exchange	163
Oligomerisation and polymerisation	163
Reviews and Dissertation Abstracts	166
Reviews	166
Dissertation abstracts	167
References	168

## METAL CARBONYLS

# Simple carbonyls and carbonylate anions

It has been shown¹ that  $Fe(CO)_5$  undergoes cathodic reduction in tetrahydrofuran to give  $[Fe_2(CO)_8]^{2^-}$ . From X-ray photoelectron spectroscopic studies² of  $Fe(CO)_5$  in the gas phase, the binding energies of the C(ls), O(ls) and  $Fe(2p_{3/2})$  orbitals have been obtained, and bond enthalpy contributions of coordinated organic ligands and related groups in olefin iron carbonyls have been calculated. A simplified form of quasi-equilibrium theory has been applied³ to the mass spectrum of  $Fe(CO)_5$ . Ion cyclotron resonance spectroscopic studies have been made⁴ of  $Fe(CO)_5$ . In mixtures of  $Fe(CO)_5$  with other species (<u>see Table 1</u>), substitution reactions were observed in which CO was replaced by a variety of other  $\sigma$ - and  $\pi$ -bonding ligands. The basicity of  $Fe(CO)_5$  in the gas phase was determined by examining

- <u>MeC1</u>:  $[Fe(MeC1)(CO)_{n-1}]^+ (n=1-4)$  $[Fe(MeC1)_2(CO)_{n-2}]^+ (n=3,4)$
- <u>HCN:</u>  $[Fe(HCN)_{x}(CO)_{n-x}]^{+}$  (x=1,n=1-5) (x=2,n=2-4) (x=3,n=3,4) [HFe(CO)_{n}]^{+} (n=4,5)
- $\frac{\underline{H}_{2}0: [Fe(\underline{H}_{2}0)(C0)_{n-1}]^{+} (n=1-\underline{h})}{[Fe(\underline{H}_{2}0)_{2}(C0)_{n-2}]^{+} (n=2-\underline{h})}$  $[Fe(\underline{H}_{2}0)_{3}(C0)_{n-3}]^{+} (n=\underline{h})$  $[HFe(C0)_{n}]^{+} (n=\underline{h},5)^{b}$
- <u>HCl</u>: [HFe(CO)_n]⁺ (n=4,5) (No other products)
- $\frac{\text{AcacH}:}{[Fe(AcacH)(C0)_{n-2}]^{+}(n=2-5)} = \frac{\text{Me}_{2}0, [FeL_{x}(C0)_{n-x}]^{+}(x=1,n=1-5)}{[Fe(AcacH)_{2}]^{+}(n=1,2)} = \frac{\text{Me}_{2}0, [FeL_{x}(C0)_{n-x}]^{+}(x=1,n=1-5)}{[MH_{3}:} = (x=2,n=2-5) + (x=3,n=4)$

$$[HFe(CO)_{5}]^{+}$$

 $\frac{C_2 D_4}{2}: \quad [Fe(C_2 D_4)_x(CO)_{n-x}]^+ (x=1, n=1-4) \\ (x=2, n=2-4)$ 

<u>Anions</u>:  $Fe(CO)_5 + F \rightarrow [FeF(CO)_3]^{-1}$  $Fe(CO)_5 + OEt \rightarrow [Fe(OEt)(CO)_3]^{-1}$ 

<u>Benzene</u>:  $[Fe(CO)_5]^+$ ,  $[Fe(C_6H_6)(CO)_2]^+$ ,  $[Fe(C_6H_6)_2]^+$ 

a order of relative rates of substitution in the primary ions is
[Te(CO)₃]⁺ > [Fe(CO)₂]⁺ > [Fe(CO)]⁺ > [Fe(CO)₄]⁺ > [Fe(CO)₅]⁺; b H⁺ is derived from H₃0⁺; c AcacH = CH₃COCH₂COCH₃. proton transfer reactions in mixtures with species of known proton affinity. Thus  $Fe(\Omega)_5$  appears to be only slightly less basic than NH₃. From a sequence of positive ion-molecule reactions in  $Fe(CO)_5$ , evidence was obtained for the species  $[Fe(CO)_n]^+$  (n = 0...),  $[Fe_2(\Omega)_n]^+$  (n = 4...8),  $[Fe_3(CO)_n]^+$  (n = 7...) and  $[Fe_4(CO)_n]^+$  (n = 10, 11 or 12). The only negative ion-molecule reaction which was observed was

$$[Fe(CO)_3]^- + Fe(CO)_5 + [Fe_2(CO)_6]^- + 2CO_5$$

in agreement with other reports.5

Ozone rapidly oxidises⁶  $Fe(CO)_5$  giving one mole of  $CO_2$  per mole of complex at low pressure; the remaining CO is recovered quantitatively and the iron is converted to oxide. The catalysis of oxidation of CO by  $O_3$  in the presence of metal carbonyls has been discussed. Treatment of  $Fe(CO)_5$  with poly(4-pyridylethylene) (L) at room temperature gave⁷ FeL₃, from which  $[FeL_2]_n$  and  $[FeL]_m$ could be obtained. With poly-1-vinyl-2-pyrrolidinone (L'),  $[FeL]_n$  was similarly prepared.⁸

### Monomeric species containing Group V donor atoms

Photolysis of  $Fe(\infty)_5$ , or direct reaction of  $Fe_2(CO)_9$ , with RN=CR'CR'=NR (R'=H, R=Bu^t, Me_3CCH_2CMe_2, Me_2CH, C_{6}H_{11}, p-MeOC_{6}H_4, 2, 6-Me_2C_{6}H_3, p-Me_2NC_{6}H_4; R'=Me, R=Fh or o-MeC_{6}H_4) gave⁹  $Fe(\infty)_3$ (RNCR'CR'NR), <u>1</u>. Photolysis of  $Fe(CO)_5$  in a glassy matrix consisting of 2-methyltetrahydrofuran (L) and isopentane afforded¹⁰  $Fe(CO)_4L$  and  $Fe(CO)_{3}L_2$ . The former species contains axial L whereas the latter is a mixture of bis-axial and axial-equatorial isomers. There was some evidence for prephotolytic L...Fe(CO)_5 interaction and the formation of mixtures of  $Fe(CO)_3L_2$  could explain the complexity of the i.r. spectra of mixtures of  $Fe_2(CO)_9$  and amines in THF. It was also noted that photolysis of  $Fe(CO)_5$  in hydrocarbon/NEt, mixtures gave  $Fe(CO)_4$ NEt₃.

Treatment of  $Fe(CO)_5$  with tertiary phosphines or phosphites (L; PPh₃, P(p-MeC₆H₄)₃, P(CH₂CH₂CN)₃, P(OEt₃), P(OMe)₃, P(OPh)₃, AsPh₃ or SbPh₃) in the presence of LiAlH₄ or NaBH₄ in refluxing THF gave¹¹ high yields of Fe(CO)₄L. The mechanism of this reaction is thought to be as follows:

$$\operatorname{Fe}(\operatorname{CO})_{5} + \operatorname{H} \rightleftharpoons [\operatorname{HCOFe}(\operatorname{CO})_{4}]^{-}; \rightleftharpoons [\operatorname{HFe}(\operatorname{CO})_{4}]^{-} + \operatorname{CO}$$

$$[\operatorname{HFe}(\operatorname{CO})_{4}]^{-} + \operatorname{L} \rightleftharpoons [\operatorname{HCOFe}(\operatorname{CO})_{3}\operatorname{L}]^{-} \rightleftharpoons \operatorname{H}^{-} + \operatorname{Fe}(\operatorname{CO})_{4}\operatorname{L}^{-} .$$

The vibrational spectrum of  $trans-Fe(CO)_3[P(OMe)_3]_2$  has been discussed,¹² and photolysis of  $Fe(CO)_5$  with  $PBu_{3-x}^t(MMe_3)_x$  (M = Si, Ge or Sn; x = 0-3) afforded¹³  $Fe(CO)_4 \{PBu_{3-x}^t(MMe_3)_x\}$  (axial phosphine). Reaction of the ferrocenyl ligand L, 2, with iron carbonyls provided  $Fe(CO)_4L$ . In diglyme,  $Fe(CO)_5$ reacted¹⁵ with  $P_4O_6$  giving  $Fe(CO)_4P_4O_6$ , 3, together with  $trans-Fe(CO)_3(P_4O_6)_2$  and  $P_4O_7$ . Reaction of  $P_4O_6$  with  $Fe_2(CO)_9$  under CO, or with  $Fe_3(CO)_{12}$ , gave  $[Fe(CO)_4]_n(P_4O_6)$  (n = 1-4). From a multi-nuclear n.m.r. spectral investigation¹⁶ of  $Fe(CO)_3(Me_2PCF_2CH_2PMe_2)$ ,  $Fe(CO)_3(Fh_2PCH_2CH_2CH_2PFh_2)$  and  $Fe(CO)_3(diars)$ (diars = <u>o</u>-phenylenebis-dimethylarsine), it has been established that these complexes are fluxional down to -70°C. The diars complex, which has nearly ideal trigonal bipyramidal geometry,¹⁷ is fluxional at -140°C.

Infrared spectral studies have shown¹⁸ that  $Fe(CO)_{4}(PPh_{3})$  and  $Fe(CO)_{3}(PPh_{3})_{2}$  form adducts with ALCL₃. Reaction of  $Fe_{2}(CO)_{9}$  with MeSb{M(CO)_{3}(n-C_{5}H_{5})}_{2} (M = Cr, Mo or W) gave¹⁹  $Fe(CO)_{4}$  MeSb{M(CO)_{3}(n-C_{5}H_{5})}_{2}.

Reduction of  $\operatorname{Ru}(\operatorname{FTh}_3)_3\operatorname{Cl}_2$  with sodium amalgam or sodium alkoxides under CO gave²⁰  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{PPh}_3)_2$ ; under  $\operatorname{CO/H}_2$  mixtures afforded  $\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_2\operatorname{H}_2$  while under NO  $\operatorname{Ru}(\operatorname{NO})_2(\operatorname{PPh}_3)_2$  was formed. The complexes  $\operatorname{Ru}(\operatorname{CO})_4\operatorname{L}(\operatorname{L} = \operatorname{PPh}_3, \operatorname{PMePh}_2$ or  $\operatorname{PBu}_3^n$ ) can be prepared²¹ conveniently by photolysing  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  in the presence of an excess of L, or by high pressure carbonylation of *trans*- $\operatorname{Ru}(\operatorname{CO})_3\operatorname{L}_2$ . Unlike the corresponding iron complex,  $\operatorname{Ru}(\operatorname{CO})_4(\operatorname{PPh}_3)$  in the solid state forms  $\operatorname{Ru}_3(\operatorname{CO})_9(\operatorname{PPh}_3)_3$  when heated, while in solution the tetracarbonyl reacts with an excess of L giving *trans*- $\operatorname{Ru}(\operatorname{CO})_3\operatorname{L}_2$ . The mechanism of this latter reaction is probably dissociative, i.e.

$$\operatorname{Ru}(\operatorname{CO})_{L} L \rightleftharpoons [\operatorname{Ru}(\operatorname{CO})_{3} L] + \operatorname{CO}; + L \rightarrow \operatorname{Ru}(\operatorname{CO})_{3} L_{2}$$



#### Alkyl, Acyl and Carbene complexes

The structure of  $[(Ph_3P)_2N][Fe(CO)_4C_3H_7]^{22}$  has been determined;²³ the n-propyl group is axial and the Fe-C bond is 2.20Å while the Fe-C(0) distances are 1.75Å. Treatment of  $[Fe(CO)_4R]^-$  and  $[Fe(CO)_3(NO)]^-$  with TINO₃ gave²⁴ stable T1(1) derivatives, viz. TIFe(CO)₄R (R = CH₂CN, COPh, CN, or SnPh₃) a.d TIFe(CO)₃(NO), respectively. The substituted species TIFe(CO)₃[P(OC₆H₄Cl)₃]-SnPh₃, and TIFe(CO)₂L(NO) (L = PPh₃, P(OC₆H₄Cl)₃) were also prepared. These species contain a weak TI-Fe bond which is not extensively dissociated.

Metal-carbon bond strengths for a variety of alkyl and acetyl iron carbonyl complexes have been inferred²⁵ from an ion cyclotron resonance spectral study of the reaction of  $Fe(CO)_5$  with methyl, isopropyl, allyl, t-butyl and



acetylchloride. Limits on several metal ion olefin bond strengths have been inferred from HX elimination reactions. Reaction of C3H7 with Fe(CO)5 gave three products, [Fe(CO)₅H]⁺ (predominantly), [Fe(CO)₄C₃H₇]⁺ and [Fe(CO)₃(C₃H₅)]⁺, while C₃H₅⁺ gave [Fe(CO)₅H]⁺ (dominant), [Fe(CO)₃C₃H₅]⁺ and [Fe(CO)₂(C₃H₅)]⁺. Reaction of Fe(CO)₅ with C(NMe₂)₄ or CH(NMe₂)₃ gave²⁶ salts of [Fe(CO)₄(CONMe₂)]⁻. UV irradiation of Fe(CO)₅ with MeC≡CC≡CMe in THF afforded

4, whose structure has been determined crystallographically.27 When the









(10)



. (11)

Me (CO)₄

(12)

photolysis is carried out in cyclohexane, the cyclopentadienone complex <u>5</u> is probably formed, while irradiation of  $Fe(\Omega)_5$  with MeCECMe gave <u>6</u>.²⁸

The carbone complex  $Fe(CO)_{\downarrow}(CHNMe_2)$  could be prepared²⁹ from  $Na_2Fe(CO)_{\downarrow}$  using either  $[Me_2N=CH_2]I$  or  $[Me_2NCHSMe]Br$ ; the latter also afforded low yields of  $[Fe(CO)_3SMe]_2$ . Treatment of  $Fe_2(CO)_9$  with  $[Me_2NC(C1)=NMe_2]Cl$  gave³⁰  $Fe(CO)_{\downarrow}\{C(NMe_2)_2\}$ .

The salts <u>7</u>, <u>8</u> and <u>9</u> reacted with  $Na_2M(CO)_4$  (M = Fe or 0s) giving³¹ the carbene complexes <u>10</u>, <u>11</u> and <u>12</u>. It was suggested that the carbene ligand occupied an equatorial position in these species. Treatment of <u>10</u> with PPh₃ afforded  $M(CO)_3(PPh_3)L$  (L = carbene ligand), and protonation of <u>10</u> or <u>12</u> (M = Os) afforded  $[Os(CO)_4IH]^+$  (L = carbene ligand); deprotonation could be achieved using Et₃N. The methyl cations  $[Os(CO)_4IMe]^+$  were prepared by reacting <u>10</u> and <u>12</u> with  $[Me_3O]BF_4]$ .

#### Complexes with Group IV ligands

Complete vibrational spectrum assignments and valence force field calculations have been made³² of  $[Fe(CO)_4SiCl_3]^-$  and  $Fe(CO)_4H(SiCl_3)$ . Treatment of  $[Et_4N][HFe_3(CO)_{11}]$  with LiGePh₃ gave³³  $[Et_4N][Fe(CO)_4GePh_3]$ , and the already known Si and Sn analogs could be prepared similarly. Protonation of the germyl complex afforded the air-sensitive and unstable cis-Fe(CO)₄-H(GePh₃).

The ¹¹⁹Sn n.m.r. double resonance spectra of  $Fe(CO)_{4}(SnMe_{3})_{2}$  and  $[Fe(CO)_{4}(SnMe_{2})]_{2}$  have been determined,³⁴ and the data have been interpreted in terms of a large paramagnetic contribution to the chemical shift arising from small average excitation energies associated with  $d_{\pi}-d_{\pi}$  bonding. An unusual solid-phase synthesis of  $Os(CO)_{4}(SnClBu_{2}^{n})_{2}$  has been developed,³⁵ and is shown in Scheme 1.



Scheme 1

This synthetic scheme can be further extended by two steps to give  $Bu_2^n Sn[Os(CO)_h SuBu_2^nC1]_2$ .

### Metal complexes of macrocyclic nitrogen ligands

In dichloromethane at low temperature,  $Fe(TPP)L_2$  (TPP = mesotetraphenylporphyrinate, L = pyridine, piperidine or l-methylimidazole) reacts³⁶ with CO by a dissociative process:

 $Fe(TPP)L \rightleftharpoons Fe(TPP)L + L;$   $Fe(TPP)L + CO \rightleftharpoons Fe(CO)(TPP)L$ 

It was suggested that this system might serve as a satisfactory model for natural CO-carrying systems. Indeed  $Fe(TPP)L(0_2)$  reacts in a 1st order process readily with CO to give the thermodynamically more stable Fe(CO)(TPP)L. Imidazole attached to silica gel, <u>13</u>, has been used³⁷ to bind Fe(TPP), and the polymer-bound complex readily formed an adduct with CO. The effect of extraplanar ligands on the redox properties and site of oxidation of Fe, Ru and Os porphyrin complexes has been investigated;³⁸ some potential data are given in Table <u>2</u>. The electrochemical properties of Os(OEP)(CO)(pyr) are similar to those of Ru(OEP)(CO)(THF),³⁹ and consist of a chemically and voltammetrically reversible oxidation to a monocation, followed by an irreversible oxidation to a dication. These electron transfer reactions are remarkable in that they



(13)





(15 a) A = H;  $Q = -NHCH_2CH_2CH_2N$ 

(15 b)  $A = CH_2CH_2CO_2Me$ ; Q as in (a)

(15c)  $A = CH_2CH_2CONHCH_2CH_2CH_2N$ Q as in (a) are associated with two distinct "oxidation sites": the first process corresponds to the oxidation of the metal, and the second to the removal of an electron from the porphyrin ligand. The species Fe(etio.1)(CO)(Im); generated by exhaustive controlled potential reduction of CO-saturated solutions containing Fe(etio.1)Cl and an excess of imidazole, was oxidised (irreversibly) at a potential nearly 0.6 V more positive (vs. SCE) than the corresponding  $Fe(etio.1)(Im)_2$ . This reflects the  $\pi$ -acceptor property of CO and its relative ability to stabilise Fe(II).

Reaction of  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  with octaethylporphyrin (H₂OEP) gave, in THF or ethanol-benzene mixtures,  $\operatorname{Ru}(\operatorname{OEP})(\operatorname{CO})(\operatorname{L})$  (L = THF or EtOH). Similar tetraarylporphyrin complexes (containing as ligand substituents  $\operatorname{C}_6\operatorname{H}_5$ ,  $\operatorname{p-CF}_3\operatorname{C}_6\operatorname{H}_4$ and  $\operatorname{p-Pr}^i\operatorname{C}_6\operatorname{H}_4$ ) were also isolated, and contained L = THF, EtOH or 4-t-butylpyridine. Treatment of these complexes with CO gave *trans*- $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{OEP})$  etc. but these lost CO on standing or on grinding. Treatment of the dicarbonyl with 4-t-butylpyridine (L) gave  $\operatorname{Ru}(\operatorname{OEP})(\operatorname{CO})$ L and it was observed that the strength of binding of the second CO group increased as a function of porphyrin substituent, in the order  $\operatorname{CF}_3\operatorname{C}_6\operatorname{H}_4 < \operatorname{Pr}^i\operatorname{C}_6\operatorname{H}_4 < \operatorname{Ph} << \operatorname{Et}$ . These data were consistent with observations made of  $\operatorname{Fe}(\operatorname{porphyrin})(\operatorname{CO})(\operatorname{piperidine}).^{41}$ Treatment of  $[\operatorname{Ru}(\operatorname{OEP})]_2$  with CO and suitable ligands (L = pyridine, DMSO) gave⁴²  $\operatorname{Ru}(\operatorname{OEP})(\operatorname{CO})$ L, also obtained from  $\operatorname{Ru}(\operatorname{OEP})(\operatorname{pyr})_2$  and CO. The dimeric species was produced by heating the bis-pyridine adduct at 220°C.

Iron(II) porphyrin complexes, which may act as models for the active site of myoglobin and oxymyoglobin, have been synthesised⁴³ and characterised by a variety of spectroscopic techniques. The "picket fence" porphyrin,  $\underline{14}$ , has great steric bulk and creates a non-protic cavity on one side of the

Couple ²	E ₁ (V) ^b	
[Ru ^{III} (etio.1)(CO)(THF)] ⁺ /[Ru ^{II} (etio.1)(CO)(THF)]	>0.64	
$[\operatorname{Ru}^{II}(\operatorname{etio.1})(\infty)(\operatorname{THF})]^{+}/[\operatorname{Ru}^{II}(\operatorname{etio.1})(\infty)(\operatorname{THF})]$	0.64	
[Ru ^{II} (OEP ⁺ )(CO)(THF)] ⁺ /[Ru ^{II} (OEP)(CO)(THF)] /	0.61	
$[0s^{III}(OEP)(pyr)_{2}]^{+}/[0s^{II}(OEP)(pyr)_{2}]$	0.48	
[Fe(etio.1)(CO)(1m)] ⁺ /[Fe(etio.1)(CO)(1m)]	0.32 [°]	
[Ru ^{III} (OEP)(pyr) ₂ ] ⁺ /[Ru ^{II} (OEP)(pyr) ₂ ]	0.08	
[Fe ^{III} (etio.1)(1m) ₂ ] ⁺ /[Fe ^{II} (etio.1)(1m) ₂ ]	-0.52	

Table 2 Redox Properties of Some Porphyrin Complexes of Fe, Ru and Os

^a etio.l= etioporphyrinate l; OEP = octaethylporphyrinate; Im = imidazole;

^b volts vs. saturated NaCl calomel electrode;

^c Ep (cyclic voltammetry) only.

molecule. The complex, as its oxygen and/or methylimidazole or THF adduct, reacts with CO giving diamagnetic CO adducts (Scheme 2). The CO stretching frequencies of these complexes are similar to those of CO adducts of haemoglobin,⁴⁴ and preliminary X-ray structural data indicate that the Fe-C-O bond is linear, in disagreement with previous suggestions that the bond angle is significantly less than 180°. Other models for the active site of myoglobin,

Scheme 2

10



TPPP = meso-tetra( $\alpha$ , $\alpha$ , $\alpha$ , $\alpha$ -O-pivalamidophenyl)porphyrinate L = TEF or l-alkylimidazole (alkyl = Me or Buⁿ).

e.g. 15, have been investigated. At low pH values, the bases in 15a,b and c, readily displace CO but 15d binds CO more strongly than 15e, whereas the differences between binding energies in 15b and 15c are very small. Mixtures of FeP, CO and NaSMe (P = "picket-fence" porphyrin or proto-porphyrin IX diethylester) afford⁴⁶ an adduct which has a Soret band at 449 nm very similar to that in cytochrome P450. This model system suggests that there is an axial SMe group.

Dithioformate Complexes, Fixation of CO₂ by Phosphine Complexes, Dithiocarbamate and Dithiolere Compounds

The complexes  $M(CO)(PPn_3)_3HX$  (M = Ru, Os; X = Cl, Br),  $M(CO)(PPn_3)_2^{-1}$   $H(OCOCF_3)$  (M = Ru or Os),  $Ru(PPn_3)_4H_2$  and  $Os(PPn_3)_3H_4$  react⁴⁷ with  $CS_2$  in boiling benzene to give  $M(CO)(PPn_3)_2X(S_2CH)$  (two isomers, <u>16a</u> and <u>16b</u>),  $M(CO)(PPn_3)_2(OCOCF_3)(S_2CH)$  (structures similar to <u>16</u>), and  $M(PPn_3)_2(S_2CH)_2$ , <u>17</u>; <u>16a</u> could be converted on heating to <u>16b</u>. Treatment of  $Ru(PPn_3)_4H_2$ ,  $Ru(PPn_3)_3(N_2)H_2$  and  $Ru(PPn_3)_3H_4$  with  $CO_2$  gave⁴⁸:  $Ru(PPn_3)_3H(O_2CH)$ . Treatment of this formate with CO,  $CS_2$ , MeI or  $H_2SO_4$  resulted in elimination of  $CO_2$ . However,  $Fe(diphos)_2H_2$  or  $Ru(PPn_3)_4H_2$  reacted⁴⁹ with  $CO_2$  and  $H_2$  in the presence of ethanol and  $Et_3N$  to give low yields of ethylformate.

Treatment of  $M(PPh_3)_3H(OCOMe)$  or  $Ru(PPh_3)_4H_2$  with  $NaS_2CNR_2$  or  $NaS_2COR$  afforded⁵⁰ the six-coordinate complexes analogous to <u>11</u>.⁵⁵ However, similar reactions involving  $M(CO)(PPh_3)_2C1(OCOMe)$  gave  $M(CO)(PPh_3)(S_2CNR_2)_2$ , <u>18</u>

 $(M = Ru \text{ or } 0s), \text{ also produced by treating } Ru(CO)(PPh_3)_2HX (X = H \text{ or } Cl) \text{ with } \{Me_2NCS_2\}_2. Os(CO)(PPh_3)_2Cl(OCOCF_3) \text{ also reacted with } NaS_2CNEt_2 \text{ giving } Os(CO)(PPh_3)_2Cl(S_2CNEt_2), <u>19</u> (X = Cl). Reaction of <math>M(CO)(PPh_3)_3HCl \text{ with } NaS_2CNR_2 \text{ or } NaS_2COR \text{ gave } M(CO)(PPh_3)_2H(S_2CQ) (Q = OR \text{ or } NR_2), \text{ analogous to } 19 (X = H).$ 

H



(16b)

(16a)

(17)

Ph3







Evaporation of dichloromethane solutions of  $[Fe{S_2C_2(CF_3)_2}_2]_2$  under CO gave⁵⁷ blue  $Fe(CO){S_2C_2(CF_3)_2}_2$ , <u>20</u>. This complex readily loses CO on heating or treatment with  $N_2H_4$  and is structurally similar to  $Fe(AsPh_3){S_2C_2(CF_3)_2}_2$ .⁵² Its treatment with PR₃ gave  $Fe(PR_3)_2{S_2C_2(CF_3)_2}_2$ . It was also noted that  $[(\eta-C_5H_5)Fe(CO)]_4$  reacted with  $(CF_3)_2C_2S_2$  giving  $(\eta-C_5H_5)Fe{S_2C_2(CF_3)_2}_2$ , which has been reported earlier.⁵³ This complex could be reduced polarographically to a moncanion.

#### Hydrides and Halide Complexes

Assignments of the Raman spectra of  $M(CO)_{4}H_{2}$  (M = Fe, Ru or Os) have been made,⁵⁴ and are consistent with a *cis* geometry. Photoelectron spectral

References p. 168

measurements have been made of cis-Fe(CO)₄X₂ (X = Br or I), and some assignments were attempted. Brief mention has been made⁵⁶ of the electrochemical oxidation of Fe(CO)₄Br₂. An irreversible electron transfer occurred at a potential more positive than the oxidation of Mn(CO)₅Br.

Carbonylation by CO at normal pressure of  $[OsX_6]^{2^-}$  afforded⁵⁷ trans- $[Os(CO)_2X_4]^-$  (X = Br or I), which was reduced by ethanolic alkali to trans- $[Os(CO)_2X_4]^{2^-}$ . The reactions of  $[OsI_6]^{2^-}$  with CO are shown in Scheme <u>3</u>. trans- $[Os(CO)_2Br_4]^-$  reacted with HBr giving  $[Os(CO)Br_5]^{2^-}$  and the former could be regenerated from the latter under CO:

Scheme 3



*Trans*- $[0s(CO)_2X_4]^{-1}$  could be isomerised to the *cis*-isomer on heating. The *cis*-diamions,  $[0s(CO)_2X_4]^{2-1}$  (X = Cl, Br, or I) were also prepared⁵⁸ by heating  $[0sX_6]^{2-1}$  with various unsaturated alcohols.

# Metal(II) phosphine complexes

Carbon disulphide reacted⁵⁹ with  $Ru(CO)_2(PPh_3)_3$  giving the known Ru(CO)(PPh3)2(CS2),60 and the related osmium complex was obtained from  $Os(CO)_2(C_2H_4)(PPh_3)_2$ . Treatment of these  $CS_2$  adducts with MeCl or MeI afforded [M(CO)₂(PPh₃)₂(CS₂Me)]⁺ with possible structures shown in figure 1. Reaction of [Ru(CO)2(PPh3)2(CS2Me)] with X (halide) gave Ru(CO)(PPh3)2X(CS2Me). but the Os complex was inert. Treatment of [M(CO)(PPh3)2(CS2Me)] with aqueous HCl in ethanol gave M(CO)(CS)(PPh3)2Cl2 and MeSH, and Os(CO)2(PFh3)2(CS2) reacted with HCl to give the same dichloride and HoS. Treatment of Ru(CO)2(PPh3)2 with CSe2 afforded⁶¹ Ru(CO)2(PPh3)2(CSe2) which reacted in the same way as its CS₂ analogue. Thus,  $Ru(CO)(PPh_3)_2X(CSe_2Me)$  (X = Cl or Br) and  $Ru(CO)(CSe)(PFh_3)_2X_2$  (X = Cl or Br) were prepared. Chromatography of impure Ru(CO)(CSe)(PFh₃)₂I₂ on alumina afforded Ru(CO)(CSe)(PPh₃)₂I(OH). The structure of Ru(CO)(CSe)(PPh3)2C12, 21, was determined crystallographically. The Ru-Cl distances (2.43A trans to CO and 2.48A trans to CSe) are both long in relation to those in comparable complexes (2.29-2.39A) and it is clear that CSe (C-Se 1.67A) has a relatively strong trans-influence.

Reaction of  $Ru(CO)_3(PFh_3)_2$  with  $RN_3$  (p = p-MeC₆H₄SO₂, p-MeC₆H₄CO, FhCO or 2-carbonylfuran) gave⁵²  $Ru(CO)_2(PFh_3)_2(RNCO)$  (all R except 2-carbonylfuran),



ureas,  $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{PPh}_3)_2(\operatorname{RNCONR})$  (R = p-MeC₆H₄SO₂), and amides. Under certain conditions the bis-amido complex  $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{PPh}_3)_2(\operatorname{NHCOR})_2$  (R = 2-furyl) could be obtained. The complex  $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{PPh}_3)_2(\operatorname{RNCONR})$  (R = p-MeC₆H₄SO₂) could also be prepared via oxidative addition of (RNH)₂CO or RNCO to  $\operatorname{Ru}(\operatorname{CO}_3(\operatorname{PPh}_3)_2$ . The complexes containing coordinated RNCO (R = p-MeC₆H₄CO or FhCO) probably contain the chelate ring shown in figure 2. Their treatment with HBF₄ afforded

Figure 2



 $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{CONHR})][\operatorname{BF}_4] \text{ which, on addition of LiCl, gave } [\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_2^{-1}(\operatorname{CONHR})Cl]_n. However, reaction of the species with R = p-\operatorname{MeC}_6H_4\operatorname{SO}_2 with mineral acids gave only p-toluenesulfonamide, while HCl reacted to give$  $<math display="block"> \operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2\operatorname{Cl}_2. \text{ The isocyanate complexes reacted only slowly with ethanol (but faster under CO) causing displacement of the organonitrogen ligand and formation of <math display="block"> \operatorname{Ru}(\operatorname{CO})_3(\operatorname{PPh}_3)_2. \text{ Protonation of } \operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{NHR})_2 (R = 2- \operatorname{carbonylfuran}) \text{ with } \operatorname{HBF}_4 \text{ gave } [\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{NHR})_2[\operatorname{BF}_4]_2.$ 

Trifluoroacetic acid reacts with  $Ru(CO)(PPh_3)_3HCl giving^{63} Ru(CO)(PPh_3)_2^{-Cl(n^2-O_2COF_3)}$ , 22. Molecular weight determinations of this compound suggest that it exists in an equilibrium with the dimer 23. Similar treatment of  $Os(CO)(PPh_3)_3HCl gave Os(CO)(PPh_3)_3Cl(n^1-OCOR) (R = CF_3 \text{ or } C_2F_5)$ , probably of structure 24a, although 24b and 24c are also possibilities. Reaction of  $Os(CO)(PPh_3)_3H_2$  with  $RCO_2H$  afforded  $Os(CO)(PPh_3)_3H(n^1-OCOR) (R = CF_3 \text{ or } C_2F_5)$ , 25 while  $M(CO)(PPh_3)_{3H_2}$ , under different conditions, afforded  $M(CO)(PPh_3)_2^{-}$  ( $OCOR)_2$  ( $R = CF_3$ ,  $C_2F_5$  or  $C_6F_5$ ). These bis-carboxylates contain one mono- and one bi-dentate carboxylato ligand. It was observed that the tendencics of the carboxylate ligand to be displaced by alcohol was controlled more by the nature of the *trans* group than by the basicity of PPh_3. Thus, monodentate carboxylate was susceptible to alcoholysis when *trans* to good  $\sigma$ -donors, but inert to solvolysis when *trans* to poor  $\sigma$ -donors, e.g. CO or  $RCO_2^{-}$ . These solvolysis studies have helped to establish a *fac* geometry of the  $M(CO)(PPh_3)_2$  group in these bis-carboxylates, and variable temperature ¹⁹F n.m.r. spectral

References p. 168



studies reveal that there is rapid interchange of mono- and bi-dentate carboxylate ligands. Treatment of  $0s(CO)_2(PPh_3)_2H_2$  with  $RCO_2H$  gave  $Os(CO)_2(PPh_3)_2H(OCOR)$  (R = CF₃ or  $C_2F_5$ ), <u>26</u>, which, on further treatment with acid, afforded  $Os(CO)_2(PPh_3)_2(OCOR)_2$ , probably <u>27</u>. These dicarboxylates could be similarly directly prepared, together with their Ru analogue, under more vigorous conditions from  $Os(CO)_2(PPh_3)_2H_2$  or  $Ru(CO)_3(PPh_3)_2$ . It was noted that conversion of  $Os(CO)_2(PPh_3)H_2$  to  $Os(CO)_2(PPh_3)_2H(OCOR)$  and then to  $Os(CO)_2(PPh_3)_2-(OCOR)_2$  involved a *cis*  $\rightarrow$  *trans-cis* rearrangement of the carbonyl ligands. It was suggested that these rearrangements probably involved stereochemically nonrigid seven-coordinate osmium(IV) intermediates, perhaps formed by protonation of the Os(II) precursors in the presence of RCO_2H (see Scheme <u>4</u>).

Scheme 4

 $Os(CO)_{2}(PPh_{3})_{2}H_{2} \xrightarrow{RCO_{2}H} [Os(CO)_{2}(PPh_{3})_{2}H_{3}][OCOR] \xrightarrow{-H_{2}} Os(CO)_{2}(PPh_{3})_{2}H(OCOR)$   $\downarrow RCO_{2}H$   $Os(CO)_{2}(PPh_{3})_{2}(OCOR)_{2} \xleftarrow{-H_{2}} [Os(CO)_{2}(PPh_{3})_{2}H_{2}(OCOR)][OCOR]$ 

Finally, it was found that  $\operatorname{Ru}(\operatorname{PPh}_3)_{4}\operatorname{H}_2$  and  $\operatorname{Os}(\operatorname{PPh}_3)_{3}\operatorname{H}_4$  reacted with  $\operatorname{CF}_3\operatorname{CO}_2\operatorname{H}$  in boiling alcohol giving  $\operatorname{M}(\operatorname{PPh}_3)_3\operatorname{H}(\operatorname{OCOC}_{5}^{+})_3 \underline{28}$ , while  $\operatorname{C}_2\operatorname{F}_5\operatorname{CO}_2\operatorname{H}$  afforded with  $\operatorname{Os}(\operatorname{PPh}_3)_3\operatorname{H}_4$ , in boiling 2-methoxyethanol,  $\operatorname{Os}(\operatorname{CO})(\operatorname{PPh}_3)_3\operatorname{H}(\operatorname{OCOC}_2\operatorname{F}_5)$ .

Treatment of  $Ru(CO)_3(PPh_3)_2$  with tetrachloro- or tetrabromo-o-quinone gave⁶⁴  $Ru(CO)_2(PPh_3)_2(O_2C_6X_4), 29$ . These species could be oxidised volta-

mmetrically to mono- and di-cations, and spectroscopic data was obtained from  $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\operatorname{O}_2\operatorname{C}_6x_4)]^+.$ 

A series of ruthenium(II) carbonyl phosphine complexes containing phenyl and anisyl arsonic acids viz.  $Ru(CO)_{2}L_{2}(O_{3}ASAr)$  (L = PPh₃, AsPh₃, P(p-MeC₆H₄)₃, As(p-MeC₆H₄)₃; Ar = C₆H₅ or p-MeOC₆H₄) and Ru(CO)₂L₂{O₅As₂Ar₂}, have been reported.65 They are alleged to contain seven- and eight-coordinate Ru(II), i.e. 30 and 31.

1 Ph₃F RĈC CO oc ÓCR ₽́₽h 🤉 0 (26)















(30)





(33)

By boiling the o-styryldiphenylphosphine (SP, <u>32</u>) complex  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{SP})_2\operatorname{Cl}_2$ in 2-methoxyethane the C-metalated complex <u>33</u> (Q = Cl) was obtained.⁶⁶ Treatment of this with Ag⁺ under CO gave  $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{o-MeCHC}_6\operatorname{H}_4\operatorname{PFh}_2)(\operatorname{SP})]^+$ , <u>33</u> (Q = CO). Each of these compounds exists in solution in an equilibrium involving two isomers, and the mechanism of interconversion may be explained in terms of an intramolecular reorientation of the coordinated vinyl group in the two possible sets of isomers as shown in figure 3. This mechanism would involve cleavage of the metal olefin bond, thereby allowing bonding to either "face" of the olefin.

Figure 3



Two other complexes were isolated from the same reaction which gave <u>33</u>. The first, <u>34</u>, could also be obtained by refluxing <u>33</u> (Q = Cl) under CO in 2methoxyethanol, or by heating  $Ru(CO)_3$ {o-MeCHC₆H₄PPh₂}Cl, obtained by treating  $Ru(CO)_3$ SP with HCl, with an excess of SP in the same solvent. Carbonylation of





(34)

(35)



(36)



<u>33</u> also afforded an isomer of <u>34</u>, namely <u>35</u> which was prepared independently via 1,3-bis {o-(diphenylphosphino)phenyl}-trans-1-butene, Q. Q reacted with  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  to give <u>36</u>, and treatment of this with HCl:gave <u>35</u>. The second additional compound isolated from the original reaction which afforded <u>33</u> was identified crystallographically as <u>37</u>. A plausible reaction route which results in the conversion of  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{SP})_2\operatorname{Cl}_2$  into <u>33</u> (Q = C1) and <u>34</u> is outlined in Scheme <u>5</u>.



There was no convincing method of explaining the formation of <u>35</u> or why 2-methoxyethane is necessary for its production. It was expected that the formation of <u>33</u> and <u>35</u> might proceed via a common intermediate, e.g. <u>38</u>, and the isomerisation of <u>35</u> to <u>34</u> might occur via <u>39</u>. The origin of <u>37</u> is unknown but arises possibly via a  $\pi$ -bonded formyl or acyl complex. When <u>33</u> is heated at 100° in 2-methoxyethanol in a sealed tube, <u>34</u> and Ru(CO)₂(o-Ph₂PC₆H₄Et)₂Cl₂ was formed, the latter by hydrogenation of the vinyl groups in SP.

Treatment of  $Os(CO)(PPh_3)_3HCl$  with  $p-MeC_6H_4SO_2CH_2NC$  (Q) afforded⁶⁷  $Os(CO)(PPh_3)_2(Q)HCl, 40$ . Reaction of this with  $HClO_4$  and CO gave  $[Os(CO)_2 - (PPh_3)_2QCl]^+, 41$ . In the presence of acetaldehyde or benzaldehyde and sodium methoxide, 40 and 41 afforded a series of carbene complexes isolated as in Scheme <u>6</u>. Treatment of 40 with acetone gave 42 in a relatively slow reaction.



(42)



Dipole moment studies, X-ray photoelectron spectroscopy and electrochemical measurements have been used⁶⁸ to evaluate the electronic charge distribution in certain complexes, including *mer-cis*-Ru(CO)(PEt₂Ph)₃Cl₂, *cis-trans-cis*-Os(CO)₂(PEt₂Ph)₂Cl₂ and *mer-trans*-Ru(NO)(PEt₃)₂Cl₃. The data are consistent with PR₃ and Cl being good electron donors, and CO and NO being powerfully electron withdrawing. Ruthenium(II) carbonyl chloride complexes containing the phospholes <u>43</u> and <u>44</u>, have been described.⁶⁹



#### Bimetallic Species

In dry deoxygenated THF,  $Fe(CO)_5$  reacts with  $KC_8$  giving⁷⁰  $K_2Fe_2(CO)_8$  together with CO and carbon. A fresh study of the Fe-Fe bond vibrations in  $Fe_2(CO)_9$  and  $Fe_3(CO)_{12}$  has been made by laser Reman spectroscopy.⁷¹

Photolysis of  $Fe(CO)_{4}L$  (L = cis- or trans-CHBr=CHBr, cis-CHB=CHF and cis- or trans-CHCl=CHCl) resulted⁷² in the elimination of L and CO. The species  $Fe(CO)_{3}L$  underwent intramolecular insertion of Fe into a C-halogen bond followed by CO addition and reaction with  $Fe(CO)_{4}$  giving  $\frac{45}{2}$  (R,R' = Br,Br; F,Br; Cl,Cl). Trans-1,2-dihalogenoethylenes also reacted⁷³ with  $Fe_{2}(CO)_{9}$  giving  $\frac{45}{2}$ . Alcoholysis of  $\frac{45}{2}$  (R,R' = Br,Br) afforded  $CH_{2}$ =CH( $CO_{2}R$ ) R = Me or Et),  $Fe(CO)_{4}\{n^{2}-CH_{2}$ =CH( $CO_{2}R\}$ ),  $Fe_{3}(CO)_{10}(C_{2}H_{2})$ , which may have the structure  $\frac{46a}{2}$  or  $\frac{45b}{2}$  and  $\frac{45}{2}$  (R = CO₂Me, R' = Br). In concentrated acetic acid  $\frac{45}{2}$  (R,R' = Br,Br) gave  $\frac{47}{2}$  and  $\frac{46}{26}$  (R=OH) and  $\frac{46}{26}$  (R=OH) was also produced on thermolysis of  $\frac{45}{2}$  (R,R' = Br,Br). Exchange of the bridging bromide in  $\frac{45}{2}$  (R,R' = Br,Br) with iodide afforded (reversibly)  $\frac{45}{2}$  (R = Br, R' = I).

Reaction of  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  with 1,4,7,10-tetraphenyl-1,2,3,7,8,9-cyclododecahexaene has afforded⁷⁴  $\operatorname{Fe}_2(\operatorname{CO})_6$  and  $\operatorname{Fe}_2(\operatorname{CO})_8$  complexes. The structure of  $\operatorname{Fe}_2(\operatorname{CO})_6C_4\operatorname{Fh}_4$ ,  $\underline{48}$  (R=Fh), the product of a reaction between  $\operatorname{Fe}(\operatorname{C}_7\operatorname{H}_8)(\operatorname{CO})_3$  and  $\operatorname{PhC=CFh}$ , has been determined crystallographically;⁷⁵ the Fe-Fe distance is 2.15A. Treatment of the ferrole complex <u>48</u> (R=OH) with CF₃C=CCF₃ afforded⁷⁶ <u>48</u> (R=OC(CF₃):CHCF

The ¹³C n.m.r. spectrum of  $Fe_2(CO)_7(C_2Ph_2)_2$ , <u>49</u>, at -40° in solution⁷⁷





(46a)

(45)



(46b)





.



is consistent with its known structure,⁷⁸ but although the three CO group resonances coalesced and the dienone fragment exhibited fluxionality as the temperature rose to +41°, the mechanisms of these processes could not be unravelled. The ¹³C n.m.r. spectral study of the violet isomer of  $Fe_3(CO)_8^ (C_2Ph_2)_2$ , 50⁷⁹ has established that the complex is stereochemically rigid, but over the range -62° to +96°, the green isomer, 51,⁷⁹ underwent scrambling of terminal and bridging CO groups. In this process, the bridging CO groups appear to be preferentially moving towards those Fe atoms with which they have shortest Fe-C distances, as indicated in the structure of 51.

From the reaction between  $Fe_2(CO)_9$  and a commercial sample of  $Bu^{t}C=CBu^{t}$ , two complexes have been isolated and studied crystallographically. The first, 52, has a short Fe-Fe bond (2.32Å), regarded as being consistent with bond order 2, and a long C-C distance (1.32Å). This compound is reported as being identical to a species suggested to be  $Fe_2(CO)_7(C_2Bu_2^{t})$ .⁸¹ Other compounds





References p. 168

regarded formally as containing Fe=Fe bonds are  $Fe_2(CO)_4(Bu^{\dagger}C_2Bu^{\dagger})_2(2.22\text{Å})$ ,⁸²  $Fe_2\{SCH_2CMe_2C_2CMe_2CH_2\}_2(CO)_4(2.23\text{Å})^{83}$  and  $[Fe(\eta-C_5H_5)(NO)]_2(2.33\text{Å})$ .⁸⁴ The other product, <u>53</u>, clearly arises from the reaction of an impurity in the acetylene, perhaps  $CH_2=C(Me)C\equiv CBu^{\dagger}$ , and has an Fe-Fe bond length of 2.74Å. Reaction of  $Fe_2(CO)_9$  with  $(C_6F_5)_2FC\equiv CFh$  afforded⁸⁵ <u>54</u> which is envisaged as containing a phosphoriadiene ring. Crystallographic studies revealed that each Fe atom has a pseudo-octahedral geometry (Fe-Fe 2.70Å). The product obtained⁸⁶ from the reaction of  $Fe_2(CO)_9$  with  $Ni(\eta-C_5H_5)(PPh_3)C\equiv CH$  has been identified⁸⁷ crystallographically as <u>55</u> (Ni-Fe 2.42Å). The acetylene bridge is regarded as being similar to that in  $Ni_2(\eta-C_5H_5)_2(PhC_2Fh)$  and  $Co_2(CO)_6(FhC_2Fh)$ . The structure of <u>55</u> is regarded as an intermediate of the two shown in figure 4.

Figure 4



Reaction of Ni(n-C₅H₅)₂ or Co₂(CO)₈, Fe₂(CO)₉ and [Fh₃FC≡CPh]Br gave Ni(n-C₅H)Fe(CO)₃(Fh₃C₂Ph), and CoFe(CO)₆(Ph₃FC₂Ph), respectively. Treatment of 56 with P(OR)₃ (R = Me, Et, Buⁿ) afforded⁸⁸ 57 which contains, formally, a twocarbon, three-electron donor, hydrocarbyl ligand (the C-C distance, 1.34Å, in the phosphonium betaine indicates considerable multiplicity). The structure of this complex bears a formal resemblance to  $Fe_2(CO)_6[C\{C_6H_3(OMe)_2\}]OEt^{89}$ and  $Fe_2(CO)_6[CFh(O)]_2$ .⁹⁰

From ¹³C n.m.r. spectral studies it has been shown⁹¹ that n⁶-cyclooctatriene complex⁹² Fe₂(CO)₆(C₈H₁₀), <u>58</u>, exhibits three fluxional processes: two at low temperature and one at higher temperature. The low temperature spectrum is consistent with the molecular structure of <u>58</u> in the solid state⁹³ and as the temperature rises, a "twitching" process occurs (Figure 5). The two enantiomorphous forms of the structure interconvert by a minimal movement of the Fe₂(CO)₆



22



(58)

Figure 5



group relative to  $C_8H_{10}$  without interchanging the ends of that group. Furthermore, in the second low temperature process, three CO groups on one of the Fe atoms are simultaneously scrambled among themselves. At higher temperature the other group of three CO groups undergoes site exchange, but at no time is there interchange of CO groups between the two Fe atoms. The observations rule out a "gliding" mechanism (Figure 6).

Figure 6



The fluxional properties of  $Fe_2(CO)_6(C_{1C}H_{12}), \underline{59} Fe_2(CO)_5(PEt_3)(C_{10}H_{12})$ , and  $Fe_2(CO)_6(C_9H_{10}) \underline{60}$  can be explained similarly,  $^{94}, ^{95}$  the low temperature scrambling of the CO groups apparently occurring at the Fe atom bound to the allylic group. It may be seen that the structure of  $Fe_2(CO)_5(PEt_3)(C_{10}H_{12})$  is qualitatively the same as <u>59</u>, and it may be noted that the Fe-Fe distances in  $Fe_2(CO)_6(C_8H_{10}), \underline{58}, ^{93} Fe_2(CO)_{60}(C_9H_{10}), ^{95} Fe_2(CO)_6(C_{010}H_{12})$  and  $Fe_2(CO)_5(PEt_3)(C_{10}H_{12})$  are 2.76, 2.77, 2.79 and 2.80A, respectively.

In the reaction between  $\operatorname{Ru}_{4}(\operatorname{CO})_{12}\operatorname{H}_{4}$  and cyclooctatetraene, the species  $\operatorname{Ru}_{2}(\operatorname{CO})_{5}(\operatorname{C}_{16}\operatorname{H}_{16})$ , <u>61</u>, is produced.⁹⁶ The structure of this complex (Ru-Ru 2.89A) is very similar to that of  $\operatorname{Ru}_{2}(\operatorname{CO})_{6}(\operatorname{C}_{8}\operatorname{H}_{8})^{97}$  and <u>58</u>. The complex is fluxional (Figure <u>1</u>), and this appears to be one of the first examples of a 1,3-shift rearrangement in cyclic polyolefin complexes. Under 10 atm of CO, <u>61</u> gives  $\operatorname{Ru}_{2}(\operatorname{CO})_{6}(\operatorname{C}_{16}\operatorname{H}_{16})$ , whose i.r. spectrum is nearly identical to that of  $\operatorname{Ru}_{2}(\operatorname{CO})_{6}(\operatorname{C}_{8}\operatorname{H}_{10})$ ;⁹⁸ a possible structure is <u>62</u>. Treatment of  $\operatorname{Ru}_{3}(\operatorname{CO})_{12}$  or

References p. 168





 $\operatorname{Ru}_{4}(\operatorname{CO})_{12}\operatorname{H}_{4}$  with an authentic sample of the cyclooctatetraene dimer did not afford <u>61</u>. Reaction of  $\operatorname{Ru}_{3}(\operatorname{CO})_{12}$  with <u>63</u> gave⁹⁹ <u>64</u>, in which the three rings have exo configurations, and which probably has an iron analogue,¹⁰⁰ and the fluxional <u>65</u>. In boiling toluene <u>65</u> rearranged to <u>64</u>.



(62)

Treatment of bis-5,8 trimethylsilyl-1,3,6-cyclooctatriene with  $\operatorname{Fe}_2(\operatorname{CO})_9$  or  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  afforded¹⁰¹ <u>66</u> and <u>67</u>, neither of which was fluxional. The structure of the previously reported¹⁰²  $\operatorname{Ru}_2(\operatorname{CO})_5({}_{\mathrm{C}}\operatorname{H}_6\operatorname{SiMe}_3)(\operatorname{SiMe}_3), \underline{68}$ , has been determined;¹⁰³ the Ru-Ru distance being 2.94Å and the interplanar angle between diene and allyl fragments being 57°. The Ru-Ru-CO chain is almost linear while the  $\operatorname{SiMe}_3$  group is bent away from the hydrocarbon ligand giving a Ru-Ru-Si angle of 173°. The bonding of the  $\operatorname{C}_7\operatorname{H}_6\operatorname{SiMe}_3$  ligand is said to veer slightly away from idealised  $n^3$ -allyl/ $n^4$ -diene bonding to the more symmetrical situation found in  $\operatorname{Ru}_3(\operatorname{CO})_6(\operatorname{C}_7\operatorname{H}_7)(\operatorname{C}_7\operatorname{H}_9).^{104}$ 





(63)

(64)





(65)

(66)



Reaction of <u>69</u> with cyclooctatetraene afforded¹⁰⁵ <u>70</u> as the major, and <u>71</u> as the minor, products. By heating <u>70</u> with  $\operatorname{Ru}(\operatorname{CO})_4(\operatorname{SiMe}_3)_2$ , <u>71</u> could be produced in good yield, but on heating <u>71</u>, <u>72</u> was formed; a similar ring opening does not occur with <u>70</u>. In <u>70</u>, the Ru-Ru distance is 2.94Å whereas in <u>72</u> it is 2.91Å. In the latter, the two diene fragments are independent of each other, the 4 C atoms which comprise them being coplenar.

Details of the synthesis of  $\underline{73}$  (L = CO) have been reported¹⁰⁶ and reaction with PFh₃, Ph₃As and Ph₃Sb, giving  $\underline{73}$  (L = Lewis base), described.

Figure 7



References p. 168









Me3Si(CO)2R



 $(CO)_2$ 

SiMe₃



The reactions of diazirines with iron carbonyls have received considerable attention.¹⁰⁷ These are outlined in Scheme <u>7</u> (the ligends investigated were diazirine itself, 3,3-dimethyl-diazirine and 3,3-pentamethylene diazirine). The proposed mechanism of formation of <u>75</u> and <u>76</u> from <u>74</u> is outlined in Scheme <u>8</u>. Treatment of <u>76</u> with methanol afforded a mixture of <u>78</u> and <u>79</u>. The stepwise cycloaddition of acetylenes to compounds of type <u>77</u> (see Scheme <u>7</u>) has been investigated.¹⁰⁸ Thus <u>80</u> (R = CO₂Me, R' = Ph or i-Pr) reacted with R"CECR" (R" = Ph) giving <u>81</u>, <u>82</u> and <u>83</u>. The structure of <u>81</u> was confirmed crystallographically.¹⁰⁹ and it was found that the N-N bond distance was consistent with unit bond order. It was suggested that the compound obtained¹¹⁰ by reaction of  $\mu$ -1,2-(3,6-diphenylpyridazine)hexacarbonyldi-iron has a similar structure. Other products obtained in the reaction with diphenylacetylene included  $Fe(\eta^4-C_4Fh_4)(CO)_3$ , and the tetraphenylferrole complex, <u>46</u>. With acetylene itself (R" = H) only <u>82</u> (R' = H) was obtained, and other species with R" = CO₂Me

Scheme 7



Scheme 8









(76)

(77)



were also prepared. Irradiation of <u>80</u> with PhCECPh afforded <u>83</u>, which was produced alternatively by heating <u>82</u> with the acetylene. A similar series of products were obtained with <u>84</u> but only the analogue of <u>81</u> could be prepared from <u>85</u>. The proposed overall mechanism is depicted in Scheme 9.

Treatment of the bridged complexes <u>86</u> (M = Mn, n = 4; M = Co, n = 3) with the phosphines  $PR_2R'$  (R = NMe₂, OMe, Me or Ph; R' = NMe₂, OMe or Fh) afforded¹¹¹ non-bridged species (OC)_LFe(µ-AsMe₂)M(CO)_{n-3}(PR₂R').



The dynamic n.m.r. spectral properties of the species  $Fe_2(CO)_6(\mu ER_n)_2$ (ER_n = PMe₂, AsMePh, AsMe₂, SMe or SEt) have been studied.¹¹² The species containing bridging SR groups showed no evidence of axial-equatorial exchange of the R group prior to the beginning of thermal decomposition. However, the other compounds exhibited three essentially independent fluxional processes: (i) CO scrambling on individual metal atoms, (ii) axial-equatorial site interchange of the R groups in a concerted manner such that it occurred in both  $ER_2$  groups simultaneously, and (iii) axial-equatorial R group interchange so that isomers of an ERR'-bridged species were interconverted. It was suggested that the low activation energy for process (i) was not inconsistent with the observations made of many other M(CO)₃ systems, that process (ii) might occur without bridge opening, and that the relatively high activation energy for process (iii) is consistent with the necessity for configurational inversion at P or As in a bridge-open intermediate.

Reaction of  $\operatorname{Fe}_2(\operatorname{CO})_9$  with the appropriate hexadentate tertiary phosphine afforded¹¹³ the bimetallic complex <u>87</u>. Treatment of  $\operatorname{Fe}(\operatorname{CO})_5$  with  $\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_n\operatorname{PPh}_2$  (n = 1, 2, 3 or 4) gave¹¹⁴ [ $\operatorname{Fe}(\operatorname{CO})_4$ ]₂{ $\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_n\operatorname{PPh}_2$ }, but when n = 1, the species  $\operatorname{Fe}(\operatorname{CO})_4(\operatorname{Ph}_2\operatorname{PCH}_2\operatorname{PPh}_2)$ ,  $\operatorname{Fe}(\operatorname{CO})_3(\operatorname{Fh}_2\operatorname{PCH}_2\operatorname{PPh}_2)$  and  $\operatorname{Fe}_2(\operatorname{CO})_7(\operatorname{Ph}_2\operatorname{PCH}_2\operatorname{PPh}_2)$  were also formed; the last could have the structures <u>88</u> or <u>89</u> and could also be prepared from  $\operatorname{Fe}_2(\operatorname{CO})_9$ . A superior route for the form-



(81)









(84)



30









(90)



ation of  $\operatorname{Fe}_2(\operatorname{CO})_6(\operatorname{L-L'})$  (L-L' = <u>90</u>) has been described¹¹⁵ and those compounds with <u>90</u>, n = 3 or 4, R = R' = AsMe₂ are new. These complexes react with monodentate ligands (L" = Ph₃P, Ph₃As, Ph₃Sb, (PhO)₃P, Ph₂AsCH₂CH₂AsPh₂) giving  $\operatorname{Fe}_2(\operatorname{CO})_5\operatorname{L"}(\operatorname{L-L'})$ ,  $\operatorname{Fe}_2(\operatorname{CO})_4\operatorname{L}_2''(\operatorname{L-L'})$  and  $\operatorname{Fe}_2(\operatorname{CO})_3\operatorname{L}_3''(\operatorname{L-L'})$ . The compound  $\operatorname{Fe}_2(\operatorname{CO})_4(\operatorname{L-L'})_2$  (L-L' = <u>90</u>; n = 2, R = AsMe₂, R' = PPh₂) may have the structure <u>91</u>.

Reactions between Fe(CO)₅, Fe₂(CO)₉ and Fe₃(CO)₁₂ and thiols, disulphides and RSR have been systematically investigated¹¹⁶ and it was reported that



reactivity towards formation of Fe2(CO)6(u-SR)2 increased in the order Fe1 < Fe2 < Fe3 and R2S < RSSR < [RSH]. Treatment of [Et3NH][Fe3(CO)11H] on the gave  $Fe_2(CO)_6(\mu-SPh)_2$ . Reaction of  $Fe_2(CO)_6(\mu-SPh)$  with RSH (R = dodecyl) in boiling methanol afforded¹¹⁷ syn- and anti-Fe₂(CO)₆( $\mu$ -SR)₂ in equilibrium with Fe₂(CO)₆(µ-SPh)₂. High resolution i.r. spectral studies have been made of  $Fe_2(CO)_6 X_2$  (X = Br, I, S, Se,  $SC_6F_5$ , SMe,  $PH(C_6H_{11})$ , PMePh, PHMe, PMe₂) and the effects of the bridging ligands in the CO stretching frequencies evaluated. New non-parameterised m.o. calculations have been made119 of the metal-metal interactions in the species  $Fe_2(CO)_6(\mu-X)_2$  (X₂ = (SMe)₂, (NH)₂, S-S, MeN=NMe, (PR2)2). These have revealed that variation of X does not markedly affect the nature of the Fe-Fe interactions. The orbital character of the highest occupied molecular orbital in each species corresponds closely to the "bent" Fe-Fe bond, while the lowest unoccupied molecular orbital is its antibonding counterpart. The calculations also indicated that in the species  $[Fe_{2}(CO)_{6}(\mu-PR)_{2}]^{2}$ , z = -1and -2, the metal-metal interaction corresponds to a "one-electron" and a "no-electron" Fe-Fe bond.

A detailed kinetic and mechanistic study has been made¹²⁰ of the reaction between  $Fe_2(CO)_6(\mu-SPh)_2$  and PPh₃. Under CO, the two step substitution reaction does not go to completion. The unsubstituted complex undergoes direct attack by PFh₃ either on the predominant *anti* form or on the very reactive *syn* form which is produced in the rate determining *anti-syn* isomerisation. The monosubstituted species  $Fe_2(CO)_5(PPh_3)(\mu-SPh)_2$  reacts with CO via an  $S_N^2$  mechanism, but a CO dissociative process is involved in its reaction with the bulkier PPh₃ ligand. The species  $[Fe(CO)_2(PPh_3)(\mu-SPh)]_2$  is unable to undergo  $S_N^2$  displacement even by CO. These results are in good agreement with others obtained earlier.¹²¹

Diaryl sulfines (Ar₂C=S=O) reacted¹²² with Fe₂(CO)₉ giving Ar₂CS and/or <u>92</u> (Ar = p-Me- or p-MeOC₆H₄). A detailed report has been made¹²³ of the reactions of <u>92</u> (Scheme <u>10</u>)

Reaction of <u>92</u> with TCNE or with light afforded <u>93</u>, but with a combination of both, <u>93</u> and  $Fe(CO)_4(TCNE)$  were formed. Treatment of <u>92</u> with OH⁻, OMe⁻, N⁻₃, NCS⁻ or CNBr also afforded <u>93</u> (R = OMe or Me) in good yield, whereas KOBu^t gave also some  $[(p-RC_6H_4)_2CH]_2$  (R = OMe). Attack by nucleophiles on <u>92</u> is thought to occur via the intermediate <u>94</u>. With O-alkyl thioesters,  $Fe_2(CO)_9$  afforded¹²⁴ <u>95</u> and <u>96</u>, a possible mechanism being outlined in Scheme <u>11</u>.

For all the ring-substituted 0-methylthioesters, the major product was <u>96</u>, suggesting that coordination of 0 to iron is more readily achieved than ometalation leading eventually to <u>95</u>. The increase in proportion of <u>95</u> with an increase in the effective size of R' in the 0-alkylthiobenzoates is probably a consequence of steric hindrance to coordination of oxygen at Fe, the steric effect arising from repulsion of R" by Fe(CO)_n groups. Further information about ring steric effects was obtained in the reaction between Fe₂(CO)₉ and <u>97</u> R HC  $Fe(CO)_{3}$   $Fe(CO)_{3}$  R (92)





(94)



(95)



(96)

which afforded <u>98</u> and some  $Fe_3(CO)_9S_2$ , but no 0-5 bonded species presumably because the species <u>99</u> is too sterically strained. Oxidation of <u>98</u> by ceric ion gave <u>100</u>.

Addition of methyliodide to  $Fe_2(CO)_{6-n}(PMe_3)_n(\mu-SMe)_2$  (n = 2 or 3) afforded¹²⁶  $Fe(CO)_2(PMe_3)_2I_2$ ,  $Fe(CO)_3(PMe_3)I_2$  and  $Fe(CO)_2(PMe_3)_2MeI$ . When n = 4, the species <u>101</u> was also obtained. Treatment of  $Fe_2(CO)_6(\mu-SR)_2$  (R = Me, Et, Ph) or  $Fe_2(CO)_6(\mu-SeFh)_2$  with  $(CF_3)_2C_2S_2$  afforded¹²⁷ the salt  $[Fe_2(CO)_6(\mu-XR)_3]$ -[Fe{S₂C₂(CF₃)₂]₂, species originally formulated¹²⁸ as  $[Fe(CO){S_2C_2(CF_3)_2}(\mu-XR)]_4$  but shown crystallographically to contain¹²⁹ a binuclear triply-bridged monocation and a binuclear monoanion. A possible reaction mechanism is



References p. 168

36

Parts of this mechanism were confirmed by the observation that  $Fe_2(CO)_6(XR)_2$ (x = S, R = Me or Ph) reacted with the powerful oxidant  $[Fe_52C_2(CF_3)_2]_2$ , and it was found that  $Fe_2(CO)_6(\mu-SPh)_2$  reacted with NOPF₆ in the presence of PhSSPh giving  $[Fe_2(CO)_6(\mu-SPh)_3][PF_6]$  together with small amounts of  $Fe_2(NO)_4(\mu-SPh)_2$ .

Reaction of  $Fe_2(CO)_9$  with MeB(SMe)₂ afforded¹³⁰  $Fe_2(CO)_6(\mu-SMe)_2$ , via an intermediate containing boron, possibly  $Fe(CO)_3$ {(MeS)₂EMe}. With 2-dimethyl-1,3,-2-dithiaborolane,  $\mu$ -S,S'~ ethylenedithiolato(hexacarbonyl)diiron was obtained, whereas the borthiin <u>102</u> afforded <u>103</u>.

Species previously formulated¹³¹ as  $Ru(CO)(S_2CNR_2)_2$  are thought to be binuclear, and the structure of a representative member of this group of molecules,  $Ru_2(CO)_2(S_2CNEt_2)_4$ , <u>104</u>, has been determined¹³² crystallographically. The distance between the metal atoms is 3.65Å, indicating the absence of a Ru-Ru bond.





(98)







(100)



(101)




(103)











Reaction of Na₂Fe(CO)₄ with  $ClGe(Me)_2)Ge(Me)_2Cl$  afforded¹³³ a mixture of <u>105</u> and <u>106</u>, but no species containing a Ge=Ge bond or  $\bigvee_{Fe}$  group. Small amounts of the known¹³⁴ Fe₂(CO)₆( $\mu$ -CreMe₂)₃ were also detected. The compound <u>105</u> is isoelectronic with  $Cr_2(CO)_8(ASMe_2)_4$ ,¹³⁵ and is fluxional (figure 8). Photolysis of <u>105</u> or <u>106</u> gave  $Fe_2(CO)_6(\mu$ -GeMe₂)₃ in a reaction which involves Ge=Ge bond rupture; <u>106</u> cannot be formed from <u>105</u>.

Tin(II) halides (Cl or Br) and  $\beta$ -diketonates (RCOCHCOR'; R=R'=Me, CF₃ or

Figure 8

 $Ge - Ge''e \longrightarrow Ge - Ge - Ge$ 

37

Ph; R=Me, R'=Ph or CF₃) reacted¹³⁶ with Fe₂(CO)₉ giving {Fe(CO)₄SnX₂}_n. The halides and acetylacetylacetonate are dimeric (n=2) but some dissociation occurs when the R,R' groups are bulky. In pyridine Fe(CO)₄SnX₂(pyr) is formed, and varying degrees of dissociation occurred in less nucleophilic solvents such as THF and MeCN. Small amounts of Fe₂(CO)₈{Sn(PhCOCHMe)₂}, <u>107</u>, were detected, and ⁵⁷Fe M8ssbauer spectral data were collected. Reaction of Na₂Fe(CO)₄ with SnMePhCl₂ afforded Fe₂(CO)₈( $\mu$ -SnMePh)₂ which, on irradiation, afforded¹³⁷ Fe₂(CO)₆( $\mu$ -CO)( $\mu$ -SnMePh)₂. This complex can exist as three geometric isomers (rigure 9) and n.m.r. spectral data are consistent with an equilibrium mixture of

### Figure 9

38



of c with either a or b, probably a. The compound is fluxional undergoing, at low temperatures, a deformation process which may be facilitiated by, or occurs in concert with, rapid bridge-terminal exchange of CO. At higher temperatures, the CO exchange process is best explained in terms of cleavage of the Sn-Fe bonds to give stannylene intermediates. Treatment of  $Fe_2(CO)_9$  with  $Sn(C_5H_5)_2$ gave¹³⁸  $Fe_2(CO)_8\{u-Sn(C_5H_5)_2\}_2$  in which the Fe atom has distorted octahedral geometry. The structure of  $Ru_2(CO)_8(SnMe_3)_2$  has been determined¹³⁹ and the Sn-Ru-Ru-Sn system is almost linear, the CO groups adopting an eclipsed configuration and leaning slightly towards the outer  $SnMe_3$  groups. The Ru-Ru distance, 2.94Å, is rather larger than the usual single bond length, and the Ru-Sn distance (2.69Å) is rather shorter then usual.

# Trimetallic and other metal atom cluster compounds

Treatment of  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  with RNC gave¹⁴⁰  $\operatorname{Fe}(\operatorname{CO})_4(\operatorname{CNR})$  and  $\operatorname{Fe}_3(\operatorname{CO})_{12-n}(\operatorname{CNR})_n$ (R = Me or Bu^t, n = 1-3). The complex  $\operatorname{Fe}_3(\operatorname{CO})_{10}(\operatorname{CNBu}^t)_2$  existed as isomers but there was no evidence for bridging isocyanide in the series of compounds. ¹H n.m.r. spectral studies indicated that the complexes were fluxional. Conformation transformations in the series  $\operatorname{M}_3(\operatorname{CO})_{12}$  (M = Fe or Ru) and  $\operatorname{Fe}_2(\operatorname{CO})_9$ have been discussed.¹⁴¹

Reaction of  $Os_3(CO)_{10}H_2$  with L (CO, CNMe,  $PMe_2Ph$ ,  $AsMe_2Ph$ ,  $PPh_3$  or PnCN) afforded¹⁴²  $Os_3(CO)_{10}LH_2$  which could be decarbonylated to give  $Os_3(CO)_9LH_2$ (L = CO or  $PR_2R'$ ); addition of CO or PhCN was readily reversible. The structure of  $Os_3(CO)_{11}H_2$ , <u>108</u>, was determined crystallographically, the intermetallic distances being  $Os_1-Os_2$  2.99,  $Os_2-Os_3$  2.86, and  $Os_1-Os_3$  2.91Å, respectively. The bridging hydride was located by implication from bond length data. It is



clear from ¹H n.m.r. spectral data that exchange of bridging and terminal hydride ligands occur via a non-bridged intermediate (figure 10). A possible mechanism whereby  $0s_3(CO)_{12}$  may be converted to  $0s_3(CO)_{10}H_2$  is outlined in the equation below:

 $0s_{3}(CO)_{12} \xrightarrow{-CO} 0s_{3}(CO)_{11} \xrightarrow{H_{2}} 0s_{3}(CO)_{11} \xrightarrow{H_{2}} + 0s_{3}(CO)_{11} \xrightarrow{H_{2}} + 0s_{3}(CO)_{10}(\mu_{2}-H)_{2}$ 

Alkylation of the N,N'-dimethyltriethylenediamine salt of  $[Fe_3(CO)_{11}]^{2^-}$ by MeSO₃F afforded the corresponding salt of  $[Fe_3(CO)_{10}(COMe)]^-$  which, on treatment with HCl, gave  $Fe_3(CO)_{10}H(COMe)$ , <u>109</u>,whose structure was determined crystallographically.¹⁴³ Reaction of  $Ru_3(CO)_{12}$  with  $Me_2NCH_2SnMe_3$  gave¹⁴⁴  $Ru(CO)_4(SnMe_2)_2$  and  $Ru_3(CO)_{10}H(CNMe_2)$ , <u>110</u>. The structure of the latter has been determined and the unit cell contains two independent molecules; the metal-metal distances were  $Ru_1$ - $Ru_2$  2.80 (both molecules),  $Ru_1$ - $Ru_3$  2.83 (both) and  $Ru_2$ - $Ru_3$ 2.83 and 2.82Å. It was noted that the species formulated¹⁴⁵ as  $Fe_3(CO)_{11}H(NMe_2)$ has recently been characterised¹⁴⁶ as  $Fe_3(CO)_{11}H(C:NMe_2)$ .

The X-ray crystallographic determination¹⁴⁷ of the structure of  $\operatorname{Ru}_3(\operatorname{CO})_9H_3(\operatorname{CMe})$ , <u>111</u> (Ru-Ru 2.84Å) has been used in a reinterpretation of the nematic phase ¹H n.m.r. spectrum¹⁴⁸ of this compound. From the new data, the Ru-H distance and Ru-H-Ru bridge bond angle was calculated to be 1.81Å (1.72Å from X-ray data) and 103° (112(7)° from X-ray data) respectively. It was suggested that the data obtained from n.m.r. measurements were probably more accurate than the crystallographic results.

Figure 10







(111)

The reactions of Os₃(CO)₁₀H₂ with acetylenes have been investigated¹⁴⁹ extensively. Thus, in general terms, the dihydride reacted with RC=CR giving  $Os_3(CO)_{10}H(RC_2HR), \underline{112}, (R = R' = H, Me \text{ or } Ph; R = H, R' = Me, Et, Bu^t or Ph)$ together with  $Os_{4}(CO)_{10}(RC_{2}R)$ , which may have the structure <u>113</u> or <u>114</u>  $(R = R' = H, Me \text{ or } Ph; R = H, R' = Me), Os_3(CO)_{10}(RC_2R')_2 (structure unknown),$  $Os_{3}(CO)_{Q}(RC_{2}R^{1}), \underline{115}(R = R' = Ph; R = H, R' = Me), Os_{3}(CO)_{Q}H(C_{2}R^{1}), \underline{116}$  $(R = H, R' = Me, Bu', Ph), Os_3(CO)_9(RC_R'), <u>117</u> (R = R' = Ph), Os_3(CO)_8H(RC_R') (RC_{2}H), \underline{118} (R = R' = Ph), Os_{2}(CO)_{6}H_{2}(RC_{2}R')_{2}, \underline{119} (R = H, R' = Me),$  $Os_2(CO)_6(RC_2R')_2$ , <u>120</u> (R = H, R' = Ph),  $Os_3(CO)_9\{(RC_2R')_2CO\}$ , <u>121</u> R = R' = H, alkyl, Ph, CO₂Me) and Os₃(CO)₁₀H(C₂R'), <u>122</u> (R' = Ph). When <u>112</u> (R = R' = H) was heated in octane, <u>123</u> was formed, and this can also be prepared directly from  $Os_3(CO)_{12}$  and ethylene. When <u>112</u> (R = R' = Me, Ph; R = H, R' = Me) was treated similarly, or with hydrogen, 124 was formed. Treatment of 124(R = R' = Ph) with  $P(OMe)_3$  or  $PPh_3$  (L) gave  $Os_3(CO)_9L(C_2Ph_2)$  which reacted further with PPh₂ in the presence of PhC=CFh affording Os₃(CO)₃(PPh₃)(C₄Ph₄), a derivative related to <u>117</u>. When <u>113</u> or <u>114</u> (R = R' = Me) was heated in reflucing heptane  $Os_3(CO)_9 E(C_4 E_5)$ , for which two structures, <u>125</u> and <u>126</u>, have been suggested (the former is preferred). On heating in toluene at 156°, this compound isomerised to 127 which is analogous to a compound obtained  150 from Fu₃(CO)₁₂ and butadiene.

Dynamic n.m.r. studies have been made¹⁵¹ of  $Os_3(CO)_9H_2(C:CH_2)$ , <u>123</u> (R = R' = H). This was achieved by random deuterium distribution achieved as

follows:  

$$CF_{3}CO_{2}D \qquad D_{2}O \qquad Os_{3}(CO)_{9}H_{2}(C:CH_{2}) \xrightarrow{CF_{3}CO_{2}D} [Os_{3}(CO)_{9}H_{2}D(C:CH_{2})]^{+} \xrightarrow{D_{2}O} Os_{3}(CO)_{9}HD(C:CH_{2}) \xrightarrow{P} Os_{3}(CO)_{9}H_{2}(C:CH_{2}) \xrightarrow{P} Os_{3}(CO)_{9}H_{2}(C:CH_{2}$$

The deuterium was equally distributed over the two possible sites, and no exchange was observed between hydridic H/D and the  $CH_2$  protons up to 40°, although at 100°, some scrambling did occur. Furthermore,  $Os_3(CO)_{12}$  reacted with  $CH_2:C(Me)CH_2CHMe_2$  giving  $Os_3(CO)_9H_2\{C:C(Me)CH_2CHMe_2\}$  which exists as two







(114)



(115)











(118)





(120)



(123)





(125)

(124)





(127)

(126)



isomers <u>128</u> and <u>129</u>. Studies of this compound established that, under conditions of hydridic H interchange, the Os-C(Me)CH₂CHMe₂ bond remained intact. A satisfactory explanation of the fluxional properties of Os₃(CO)₉H₂(C:CH₂) is illustrated in Scheme 12.

These studies verify earlier predictions¹⁵² that hydrogen exchange occurs directly by hydride migration from one edge of the metal triangle to the other. For the complexes  $\operatorname{Ru}_3(\operatorname{CO})_9\operatorname{H}_2(\operatorname{C_8H}_{12})$ ,  $\operatorname{Os}_3(\operatorname{CO})_7(\operatorname{AsMe}_2)_2(\operatorname{C_6H}_4)^{153}$  and  $\operatorname{Os}_3(\operatorname{CO})_9\operatorname{H}_2(\operatorname{MeC}_2\operatorname{Me})$  (<u>113</u> or <u>114</u> (R = R' = Me)), another mechanism, involving olefin rotation is necessary to explain their fluxional processes. It was observed that these three complexes underwent localised CO scrambling and it was suggested that a mechanism as in figure ll could account for this.

Figure 11







1_d





Os

However it was suggested that an alternative process could involve olefin rotation (figure 12) and this could account for the observation, in the fast exchange limit, of only one ¹³C carbonyl resonance and interchange of the hydride sites. However in these systems, as in  $Os_3(CO)_9H_2(C:CRR')$ , a number of exchange mechanisms can operate independently.

Figure 12



44

Reaction of  $Os_3(CO)_{10}H_2$  with an excess of ethylene afforded¹⁵⁴ ethane and  $Os_3(CO)_{10}H(CHCH_2)$  (<u>112</u>, R = R' = H) which rearranges in refluxing octane to  $Os_3(CO)_9H_2(C:CH_2)$  (<u>123</u>, R = R' = H) and  $Os_3(CO)_{12}$ . The vinyl complex is fluxional (figure 13).

Figure 13



In refluxing heptane,  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  reacted with cycloheptatriene giving¹⁵⁵  $\operatorname{Ru}_3(\operatorname{CO})_6(\operatorname{C}_7\operatorname{H}_7)(\operatorname{C}_7\operatorname{H}_9)$ , <u>130</u>, the structure of which has been confirmed crystallographically,¹⁵⁶  $\operatorname{Ru}_2(\operatorname{CO})_6(\operatorname{C}_7\operatorname{H}_8)$ , <u>131</u>,  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_8)$  and  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_{10})$ . The cycloheptatriene complex  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_8)$  could be prepared either by photolysis of  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  in the presence of the triene, or by displacement¹⁵⁷ of cycloocta-1,5-diene from  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_8\operatorname{H}_{12})$ ;  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_{10})$  could be obtained by the last process. When <u>130</u> was refluxed in the presence of  $\operatorname{C}_7\operatorname{H}_8$ ,  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_8)$  was formed but on heating the latter on its own, <u>130</u> was regenerated, while with addition  $\operatorname{C}_7\operatorname{H}_8$ ,  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{C}_7\operatorname{H}_8)$  was formed. These results suggest that <u>130</u> is not formed directly from  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  with retention of the  $\operatorname{Ru}_3$  triangle, but is



produced via  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_8)$  which is the source of all the other products. It was also observed that when  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  and  $\operatorname{C}_7\operatorname{H}_8$  reacted in dichloromethane,  $\operatorname{Ru}_2(\operatorname{CO})_4(\operatorname{C}_7\operatorname{H}_7)\operatorname{Cl}, \underline{132}$  (X = Cl; R = H) was produced. Analogues of this compound were prepared by reacting  $\underline{130}$  with  $\operatorname{CCl}_4$ ,  $\operatorname{CBr}_4$  or  $\operatorname{I}_2$ , a byproduct being  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{n}^5-\operatorname{C}_7\operatorname{H}_9)$ X. Treatment of  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  with substituted cycloheptatrienes  $\operatorname{C}_7\operatorname{H}_7$ R (R = Me or Fh) afforded analogues of  $\underline{130}$ ,  $\operatorname{Ru}_3(\operatorname{CO})_6(\operatorname{C}_7\operatorname{H}_6\operatorname{R})(\operatorname{C}_7\operatorname{H}_8\operatorname{R})$  and  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{C}_7\operatorname{H}_7\operatorname{R})$ ; the former reacted with iodine giving  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{C}_7\operatorname{H}_8\operatorname{R})$ I and

References p. 168



 $\operatorname{Ru}_2(\operatorname{CO})_4(\operatorname{C}_7\operatorname{H}_6\operatorname{R})$ I, <u>132</u> (X = I, R = Ph). Even at -100°, <u>130</u> is fluxional¹⁵⁸ (figure 14). For <u>132</u> (R = Me or Ph), likewise non-rigid at -100°, two pathways whereby the  $\operatorname{Ru}_2(\operatorname{CO})_4$ X fragment can oscillate about the ring have been proposed (figure 15).

Figure 15



Reaction of  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  with nitroethane in boiling benzene afforded¹⁵⁹ iron oxides together with  $\operatorname{Fe}_3(\operatorname{CO})_9(\mu_3-\operatorname{NEt})$ ,  $\operatorname{Fe}_3(\operatorname{CO})_9(\mu_3-\operatorname{NEt})$ ,  $\operatorname{Fe}_3(\operatorname{CO})_3(\mu_3-\operatorname{NEt})(\mu_3-\operatorname{CO})$ ,  $\operatorname{Fe}_2(\operatorname{CO})_6(\mu-\operatorname{EtNNEt})$  and  $\operatorname{Fe}_2(\operatorname{CO})_6(\mu-\operatorname{EtNCONEt})$ . Treatment of iron carbonyls with 2,3-diazanorbornene gave¹⁶⁰  $\operatorname{Fe}(\operatorname{CO})_4(\operatorname{C}_5\operatorname{H_8N_2})$ ,  $\operatorname{Fe}_2(\operatorname{CO})_6^ (\operatorname{C}_5\operatorname{H_8N_2})$  (see Schemes 7 and 8, ref. 107) and  $\operatorname{Fe}_3(\operatorname{CO})_9(\operatorname{C}_5\operatorname{H_8N_2})$ ,  $\underline{133}$ . With the fluorinated azobenzenes,  $\operatorname{C}_6\operatorname{F}_5\operatorname{N}_2(1,2,3,4-\operatorname{XC}_6\operatorname{H})$  (X = H or F),  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  afforded¹⁶¹  $\underline{134}$ . Pyridine reacted with  $\operatorname{Os}_3(\operatorname{CO})_{12}$  giving¹⁶² a series of complexes  $\operatorname{Os}_3(\operatorname{CO})_{10}\operatorname{H}(\operatorname{NC}_5\operatorname{H_4})$  ( $\underline{135}$ , either, a or b),  $\operatorname{Os}_3(\operatorname{CO})_9(\operatorname{pyr})\operatorname{H}(\operatorname{NC}_5\operatorname{H_4})$  (also as two isomers),  $\operatorname{Os}_3(\operatorname{CO})_8\operatorname{H_2}(\operatorname{NC}_5\operatorname{H_4})_2$  (no fluxional) and  $\operatorname{Os}_2(\operatorname{CO})_6(\operatorname{NC}_5\operatorname{H_4})_2$  ( $\underline{136}$ , isomers a or b). The reaction pathway is outlined in Scheme 13; 4-methylpyridine behaved similarly. Isoquinoline also reacted with  $\operatorname{Os}_3(\operatorname{CO})_{12}$  giving a mixture of  $\underline{137}$  and  $\underline{138}$  (16 and 14% respectively), while quinoline afforded  $\underline{138}$  and  $\underline{139}$ .





(133)

(132)



(134)

Scheme 13

It has been found that the triruthenium oxy clusters can be oxidised as outlined below:



47







(136a)









(137 b)

I.R. and mass spectral data obtained from  164  Fe₃(CO)₆L₃S₂ (L = pyr or  $C_{5+10}^{H}N$ ,  $Fe_3(CQ_1L_2S_2$  (L = NEt₃, PPh₃;  $L_2$  = bipy or o-phen) and  $Fe_3(CO)_8IS_2$ (L = NCMe or PPh₃) indicates that there is strong bonding within the  $Fe_2S_2$ group. The position of substitution in the precursor  $Fe_3(CO)_9S_2$  was difficult to establish, although only one Fe atom appeared to be involved. Reaction of Fe(CO)₅ with [FC(:0)S]₂ geve¹⁶⁵ Fe₃(CO)₉S₂.

Mössbauer spectrel and X-ray crystallographic studies have been made of

 $Fe_3(CO)_9H(SR)$  (R = Prⁱ or 3uⁱ), <u>137</u>. The mercapto group is 1.5Å above the Fe₃ plane, while the Fe₁-Fe₂, Fe₂-Fe₃ and Fe₁-Fe₃ bond lengths are 2.65, 2.68 and 2.64Å, respectively. It was noted that arguments involving lengthening of metal-metal bonds as evidence for the presence of bridging hydride cannot be applied to cases where another bridging group imposes stereochemical constraints.

From a mixture of RuCl₃ and  $MeS_2CNEt_2$  in methanol under CO which had been allowed to stand for a week, the complex  $Ru_3(CO)_3Cl_2(S_2CNEt_2)_4$  was obtained.¹⁶⁷ The structure of this compound, <u>138</u>, was established crystallo-





(138)



(139)



(140a)



(140 b)





graphically; Ru1-Ru2 3.74, Ru3-Ru1, 3.70 and Ru3-Ru2 3.67Å, respectively.

From ¹³C n.m.r. spectral studies it has been established¹⁶⁸ that FeM(n-C₅H₅)(CO)₉ (M = Rh, <u>139</u>; M = Co, <u>140</u>) were fluxional, and limiting low temperature spectra could not be obtained. However, a spectrum consistent with the structure of FeRh₂(n-C₅H₅)₂(CO)₆, <u>141</u>, was observed, and the mechanism of CO site exchange was found to be similar to that in Fe₃(CO)₁₂. The structure of the previously reported¹⁶⁹ RuPt₂(CO)₅(PPh₂Me)₃, <u>142</u>, has been determined crystallographically.¹⁷⁰ The phosphine ligands attached to Pt are coplanar with the RuPt(CO)₃ cluster while the ligands attached to Ru are bound axially. The equatorial CO groups do not bridge the Ru-Pt bonds symmetrically, perhaps for steric reasons. The Ru-Pt bond distances are unequal (2.71 and 2.73Å), the longer bond lying opposite to the larger Pt-Ru-CO angle (Pt-Pt = 2.65Å).

When  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  was heated at *ca*. 150° in a sealed tube,  $\operatorname{Ru}_6(\operatorname{CO})_{17}^{C}$  was formed,¹⁷¹ establishing that the carbide atom is derived from CO; at 180°, the carbonyl decomposes to Ru metal. On heating  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  in benzene, very small amounts of  $\operatorname{Ru}_6(\operatorname{CO})_{14}(\operatorname{C}_6\operatorname{H}_6)^{C}$  were formed. The implications of this work are that the carbide atoms in  $\operatorname{Fe}_5(\operatorname{CO})_{15}^{C}$ ,  $[\operatorname{Fe}_5(\operatorname{CO})_{14}^{C}C]^{2^-}$  and  $[\operatorname{Fe}_6(\operatorname{CO})_{16}^{C}C]^{2^-}$  might also be derived from CO. Attempts to prepare  $\operatorname{Fe}_6(\operatorname{CO})_{17}^{C}^{C}$  and  $\operatorname{Fe}_5(\operatorname{CO})_{12}^{C}^{C}$  by the pyrolysis of  $\operatorname{Fe}_3(\operatorname{CO})_{12}^{C}$  failed. The results of pyrolysis of  $\operatorname{Os}_3(\operatorname{CO})_{12}^{C}$  at various temperatures are summarised in Table 3. It may be noted that the size of the metal atom cluster tends to increase with temperature, culminating in the formation of Os metal. The structures of these complexes have been predicted in terms of the "18-electron rule" and Wades theory,¹⁷² and the results are





(143)

		Temperatures and Yields					
Product	Colour	510 <b>°</b>	250°	260°			
0s6(co)18	dark brown	80%	60%				
0s_(CO)_16	pink-red	7%	-	-			
0s ₇ (CO) ₂₁	orange	10%	20%	yield increased			
0s8(CO)23	orange	2%	5%	yield increased			
osg(co)	yellow	-	8%	-			
05 (CO) 15 C	purple	-	5%	-			
Os metal		-	-	main product			

<u>Table 3</u> Pyrolysis products obtained from Os₃(CO)₁₂, as a function of temperature

included in Table 4. The structure of  $Os_5(CO)_{15}C$ , and its ruthenium analogue, is probably similar to  $Fe_5(CO)_{15}C$ , <u>143</u>,¹⁷³ while in  $Os_5(CO)_{16}$ , <u>144</u>, there may be a variable formal exidation state for some metal atoms, as in  $Os_6(CO)_{18}$ , <u>145</u>. For the last, the "18-electron rule" predicts an octahedral arrangement of metal atoms, which has been shown to be incorrect.¹⁷⁴ However, it may be noted that  $Ru_6(CO)_{18}H_2$  (86 valence electrons) has an octahedral  $Ru_6$  arrangement.¹⁷⁵ For  $Os_7(CO)_{21}$ , the "18-electron rule" predicts an edge-bridged octahedron, but the

Compound		No. of Valence Electrons	No. of Os-Os bonds for cluster to obey 18- electron rule	No. of skeletal electron pairs	(e)	(ъ)
0s ₅ (CO) ₁₅ C,	<u>143</u>	74	¹ ₂ (50-34)=8	7(n+2)	sq. based prism	sq. based prism
0s ₅ (CO) ₁₆ ,	<u>144</u>	72	¹ 2(50-32)=9	6(n+1)	tbp ^C	tbp ^c
$0s_{6}(c0)_{18},$	<u>145</u>	84	¹ / ₂ (60−36)=12	6(n)	reg. octa.	
0s7(CO)21,	<u>146</u>	98	12(70-42)=14	7(n)	edge bridged octa	monocapped octa
^{0s} 8 ^(c0) 23 0s8 ^(c0) 21	<u>147</u> <u>148</u>	110	1 2(80-46)=17	7(n-1)	edge and face-bridged octa. or bicapped tp	

Table 4 Structural predictions for osmium carbonyl clusters

- ^a If 18-electron rule is obeyed by *each* metal atom and bridging carbonyls may be involved;
- ^b According to Wade's rules (ref. <u>172</u>);
- c tbp = trigonal bipyramid;
- d tp = trigonal prism.



isoelectronic  $[Rh_{\gamma}(CO)_{16}]^{3-}$  has been found¹⁷⁶ to contain a monocapped octahedral  $Rh_{\gamma}$  cluster; preliminary X-ray crystallographic studies appear to confirm this situation in  $0s_{\gamma}(CO)_{21}$ . For  $0s_8(CO)_{23}$ , two alternatives, <u>147</u> and <u>148</u>, have been proposed, and  $0s_8(CO)_{21}C$  could have either structure with the carbon atom in the centre of either cluster. ¹³C n.m.r. spectral studies have shown¹⁷⁷ that  $0s_6(CO)_{18}$ , while maintaining its bicapped tetrahedral structure in solution up to 100°, undergoes three fluxional processes corresponding to localised CO scrambling. These are a low temperature localised site exchange about 0s(3), 0s(3'), 0s(2) and 0s(3'), a mid-temperature localised CO scrambling about each metal atom. It



was observed that CO migration does not occur in this molecule although it has been observed in  $0s_3(CO)_{12}^{178}$  and this is thought to be due to the relative intermetallic distances in the molecule (CO bridges do not commonly occur in osmium carbonyl complexes). It was noted that ¹³CO enriched  $0s_6(CO)_{18}$  could not be prepared by ¹³CO exchange with the complex, but was produced by pyrolysis of enriched  $0s_3(CO)_{12}$ . Reduction of  $0s_6(CO)_{18}$  with zinc dust afforded  $[0s_6(CO)_{18}]^{2-}$  which, on the basis of ¹³C n.m.r. spectral data, appears to have an octahedral  $0s_6$  cluster as predicted by Wade's theory.

Hydrogenation, at atmospheric pressure and 120°, of  $M_3(CO)_{12}$  (M = Ru and Os) in hydrocarbon solvents afforded¹⁷⁹ good yields of pure  $M_4(CO)_{12}H_4$ . Reaction of  $Os_3(CO)_{10}H_2$  with more hydrogen gave  $Os_4(CO)_{12}H_4$ , and  $Ru_4(CO)_{12}D_4$  was prepared using  $D_2$ ; extensive H/D was observed between  $Os_4(CO)_{12}D_4$  and hydrocarbon solvent. Treatment of  $Ru_4(CO)_{13}H_2$  with  $D_2$  gave  $Ru_4(CO)_{12}H_2D_2$  and FeRu₃(CO)₁₂H₄ was obtained similarly from FeRu₃(CO)₁₃H₂ but reaction of  $\operatorname{FeRu}_2(\operatorname{CO})_{12}$  with H₂ failed to provide a mixed metal carbonyl hydride cluster. The thermal decomposition of a variety of Ru₁ carbonyl hydride clusters, viz.  $\alpha-\operatorname{Ru}_1(\operatorname{CO})_{12}$ H₄, Ru₄(CO)₁₀L₂H₄(L = PPh₃), Ru₄(CO)₉L₃H₄(L = PPh₃ or PBu₃ⁿ), and Ru₄(CO)₈L₄H₄(L = PPh₃ or PBu₃ⁿ) has been investigated.¹⁸⁰ The data suggest release of CO and phenyl or butyl groups lealing to the formation of phosphoruscontaining metallic residues.



(149)

¹³C n.m.r. spectral studies of  $\text{FeRu}_3(\text{CO})_{13}\text{H}_2$ , <u>149</u>, have revealed¹⁸¹ that there are three fluxional activities associated with the CO groups. These are (i) a bridge opening process at Fe, the CO moving to Fe, and localised CO scrambling, (ii) localised CO scrambling at the three Ru atoms, and (iii) a general CO exchange between all metal atoms.

Treatment of  $\operatorname{Ru}_{4}(\operatorname{CO})_{12}\operatorname{H}_{4}$  with alcoholic KOH gave¹⁸²  $[\operatorname{Ru}_{4}(\operatorname{CO})_{12}\operatorname{H}_{3}]^{-}$  (isolated as the  $\operatorname{Ph}_{4}\operatorname{As}^{+}$  salt). Raman spectra indicated the presence of bridging hydride ligends while n.m.r. spectral data revealed the presence of two isomers with several possible structures, e.g. <u>150</u> a, b or c or <u>151</u> a or b.

Reaction of  $\operatorname{Fe}_5(\operatorname{CO})_{15}^{C}$  with phosphines or phosphites (L = PPh₃, PMe₂Ph, P(OPrⁿ)₃ or P(OPh)₃) gave  $\operatorname{Fe}_5(\operatorname{CO})_{15-n}n_n$  (n = 1-3). While the carbide was unaffected by strong acid it reacted with PhC=CPh and MeC=CPh with fragmentation of the cluster giving  $\operatorname{Fe}_2(\operatorname{CO})_6(\operatorname{RC}_2\operatorname{R}^{1})_2$  and  $\operatorname{Fe}_3(\operatorname{CO})_9(\operatorname{RC}_2\operatorname{R})$ . Reduction of the carbide cluster with NaOH, NaBE₄ or Na/Hg afforded  $[\operatorname{Fe}_5(\operatorname{CO})_{14}\operatorname{C}]^{2^-}$  and it was observed that the i.r. spectrum of this salt is at variance with that previously reported for  $[\operatorname{Fe}_5(\operatorname{CO})_{14}\operatorname{C}]^{2^-}$  obtained¹⁸⁴ from reaction of  $\operatorname{Fe}(\operatorname{CO})_5$  with  $[\operatorname{Mo}(n^5-\operatorname{C}_5\operatorname{H}_5)(\operatorname{CO})_3]^-$ . This latter product has been reformulated as  $[\operatorname{Fe}_6(\operatorname{CO})_{16}\operatorname{C}]^{2^-}$ .

Acetylenes  $(RC_2R'; R = Ph, R' = Me, Et or Ph; R = R' = CH_2OMe)$  reacted¹⁸⁵ with  $Ru_2(CO)_{12}$  giving  $Ru_4(CO)_{12}(RC_2R')$ , <u>152</u>, which could be protonated to give  $[Ru_4(CO)_{12}H(RC_2R')]^+$  (edge bound H⁺). Further treatment of <u>152</u> with PhC_2R" (R'' = Me or Et) gave <u>153</u> (tentative proposal), and it was noted that <u>152</u> (R = R' = Ph), in refluxing heptane under hydrogen, gave  $Ru_4(CO)_{12}H_4$  and trans-stilbene.

Reaction of  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  with 2-mercaptopyridine gave <u>154</u> (Fe(1)-Fe(2)





(150 b)



(150 c)



(151a)



2.60Å, Fe(3)-Fe(4) 2.53Å); the S atom has tetrahedral geometry. Treatment of  $Fe_2(CO)_6S_2$  with PhSSPh, FhSH and NaOMe in methanol gave  $[Fe_4S_4(SPh)_4]^{2^-}$ , (basic structure 155) while using  $[p-Me_3NC_6H_4S]_2[PF_6]_2$ ,  $[Fe_4S_4(SC_6H_4NMe_3)_4][PF_6]_2$ was found. A similar reaction using 2,24bis(benzo[d]thiazoline)4,4'-dinitrophenyl disulfide gave 156 as a dianion.

Treatment of FeCo3(CO)12H with P(OMe)3 gave FeCo3(CO)12-n{P(OMe)3n





(154)



(n = 1-4), and the structure of the complex where n = 3, <u>157</u>, has been determined¹⁸⁸ crystallographically. The hydride ligand lies on the three-fold axis and is 0.75Å out of the Co₃ plane; Fe-Co = 2.56Å and Co-Co = 2.49Å. Similar phosphine complexes FeCo(CO)_{12-n}L_n (L = PPh₃, FMePh₂, PEt₃, P(OPh)₃, F(OPrⁿ)₃, and L₂ = Ph₂PCH₂CH₂PPh₂, n = 1-3) have been reported,¹⁸⁹ and M&ssbauer spectral data have revealed that substitution takes place preferentially at cobalt, each Co atom being successively substituted to give FeCo₃(CO)₉L₃H. The complex FeCo₃(CO)₈(Ph₂PCH₂CH₂PPh₂)H exists as a mixture of isomers, one of which has substitution at the Fe atom.



(157)

# METAL ISOCYANIDES

Treatment of FeCl₂ with PFh(OEt)₂ and RNC (R =  $C_6H_5$ , p-RC₆H₄ (R = Me, OMe, NO₂), o-MeC₆H₄ and 2,6-Me₂C₆H₃) gave¹⁹⁰ [Fe(CNR)₂{PPh(OEt)₂}₃Cl]⁺, <u>158</u> while with

 $\begin{aligned} & \text{PFh}_{3} \text{ and } p-\text{MeC}_{6}^{H_{1}}\text{NC}, \left[\text{Fe(CNR)}_{3}(\text{PFh}_{3})_{2}^{CL}\right]^{+}, \underline{159} \text{ (two possible isomers; a} \\ & \text{favoured on i.r. spectral basis), was formed. With } C_{6}^{H_{11}}\text{NC} \text{ and } \text{PFh(OEt)}_{2}, \text{ FeCl}_{2} \\ & \text{afforded } \left[\text{Fe(CNC}_{6}^{H_{11}}\right)_{3} \{\text{PFh(OEt)}_{2}\}_{3}^{2^{+}}, \underline{160}. & \text{Mössbauer and i.r. spectral data} \\ & \text{were compiled for these compounds. The isocyanide adducts of ferrous phthalocyanin, FeLL'Pc, (L = L' = C_{6}^{H_{11}}\text{NC}, \text{Bu}^{T}\text{NC}; L = C_{6}^{H_{11}}\text{NC}, L' = N-\text{methylimidazole}) \\ & \text{have been reported.}^{191} \end{aligned}$ 

Reaction of the Fe(IV) complex,  $[Fe(S_2CNEt_2)_3]^+$ , with CNR (R = Prⁱ, Bu^t or p-ClC₆H₄) gave  $[Fe(CNR)_4(S_2CNEt_2)]^+$ , which could be electrochemically oxidised to a dication. Treatment of  $Fe(S_2CNEt_2)_3$  with CNR afforded the stereochemically rigid *cis*-Fe(CNR)₂(S₂CNEt₂)₂, which could be voltammetrically oxidised to a monocation.









(159 a)







(160)

(161)

Carbene species derived from isocyanide complexes. The structure of the complex  $\operatorname{Ru}(\operatorname{CO})(\operatorname{p-MeC}_{6H_{4}}\operatorname{NCH})(\operatorname{PPh}_{3})_{2}\operatorname{OAc}$ , <u>161</u>, obtained¹⁹³ by treatment of  $\operatorname{Ru}(\operatorname{CO})\{\operatorname{CN-}(\operatorname{p-MeC}_{6H_{4}})\}(\operatorname{PPh}_{3})_{2}(O_{2})$  with ethanol, has been determined¹⁹⁴ crystallographically. The Ru-C (carbene) distance, 1.96Å, is only a little shorter than that estimated for a Ru-C(sp²) bond (2.00Å). Thus, the Ru-C (carbene) bond order is close to unity, and the C-N distance (1.24Å) is shorter than that expected for bond order 2. The Ru-C-N bond angle is 135°.

From Mössbauer spectral data, it has been estimated¹⁹⁵ that in  $[Fe(CNMe)_5(carbene)]^{2+}$ , and  $[Fe(CNMe)_4(carbene)_2]^{2+}$ , (carbene = RNHCN(R')CNHR' and RNHCNHNHCNHR'), the carbene ligands are very good  $\sigma$ -donors and relatively pcor  $\pi$ -acceptors. They are better  $\sigma$ -donors and poorer  $\pi$ -acceptors than CNMe.

#### PHOSPHINE AND PHOSPHITE COMPLEXES

Photoelectron spectroscopic studies of  $M(PF_3)_5$  (M = Fe or Ru) have shown¹⁹⁶ that PF₃ is a stronger electron-withdrawing ligand than CO. The phosphite complexes Fe{P(OR)₃}₅ (R = Me, Et or Prⁿ), prepared¹⁹⁷ by reduction of FeBr₂ by Na/Eg in the presence of P(OR)₃ in THF, are fluxional, undergoing Berry rotations, as expected. ³¹P n.m.r. spectral studies showed that the barrier of rotation increased with increasing length of the substituent R, indicating that steric crowding in the transition state is important.

Reduction of  $Fe(PMe_3)_2Cl_2$  with Na/Hg or Mg in the presence of  $PMe_3$ afforded¹⁹⁸ <u>162</u> which appears to be in equilibrium with  $Fe(PMe_3)_4$ . This complex reacted with hydrogen giving  $Fe(PMe_3)_4H_2$ , and with  $PF_3$  affording the fluxional  $Fe(PF_3)_2(PMe_3)_3$ , in which the  $PF_3$  ligands are equatorial. There is also some evidence for the equilibrium  $Fe(PMe_3)_4 + PMe_3 \Longrightarrow Fe(PMe_3)_5$ . Reduction of  $Fe(PMe_3)_2Cl_2$  in the presence of butadiene gave  $Fe(PMe_3)(\eta^4-C_4H_6)_2$ , while reduction in the presence of acetonitrile afforded first  $[Fe(PMe_3)_3(NCMe)_3]^{2+}$  $[FeCl_4]^{2-}$ , and then <u>163</u>. Reduction of  $Fe(PMe_3)_2Cl_2$  in the presence of MeC=CMe gave <u>164</u> together with hexamethylbenzene, and  $Fe(PMe_3)_4$  catalysed the trimerisation of MeC=CMe as well as the oligomerisation to tetra-, penta- and hexa-mers.

Triple chloro-bridged binuclear complexes of ruthenium containing  $PF_3$ and/or CO have been prepared¹⁹⁹ as outlined in Scheme 14. The complex <u>165</u> (L = PF₃) can also be prepared from a mixture of Ru(PPh₃)₃Cl₂ and *cis*-Ru(PF₃)₂-(PPh₃)₂Cl₂. Treatment of (Ph₃P)₂(CO)Ru( $\mu_2$ -Cl)₃Ru(PPh₃)₂Cl with PF₃ gave (Fh₃P)₂(CO)Ru( $\mu_2$ -Cl)₃Ru(PF₃)(PPh₃)Cl, while, under certain conditions, PF₃ reacted with Ru(PPh₃)₃Cl₂ giving (Ph₃P)₂(F₃P)Ru( $\mu_2$ -Cl)₃Ru(PPh₃)₂Cl. The complex (Ph₃P)₂(F₃P)Ru( $\mu_2$ -Cl)₃Ru(PF₃)(PPh₃)Cl exists as three isomers (<u>166</u>, a 74%, b 16% and c 10%).



58



(162)





(164)



(165)



(166a)







(166c)

# METAL NITROSYL AND ARYLDIAZO COMPLEXES

<u>Mononitrosyl Compounds</u>. ESCA studies of nitrosyl complexes provide²⁰⁰ a complementary method to i.r. spectroscopy for attempting to distinguish between bent and linear M-N-O groups. Among the iron and ruthenium complexes studies were  $Na_2[Fe(NO)(CN)_5].2H_2O$ ,  $Fe(NO)(S_2CNMe_2)_2$ ,  $Ru(NO)(S_2CNMe_2)_3$ ,  $Ru(NO)(PPh_3)_3H$ ,  $Ru(NO)(PPh_3)_2Cl_3$  and  $[Ru(NO)_2(PPh_3)_2Cl]BF_4$ . The relative shifts of the binding



energies of the 0 <u>ls</u> and N <u>ls</u> electrons fell in the range 132 ± 1 eV for linear M-N-O and 128 ± 2 eV for bent M-N-P. These assignments are a reversal of previous assignments²⁰¹ of N <u>ls</u> binding energies in nitrosyl complexes. Evaluation of the N <u>ls</u> binding energies illustrates that the "NO" in a bent nitrosyl complex actually may have less electron density associated with the N atom than "NO⁺" in a linear nitrosyl system.

Treatment of Na[Fe(CO)₄H] with AgNO₃ in aqueous methanol gave²⁰² [Fe(CO)₄HAg]AgNO₃, and a similar reaction with Na[Fe(CO)₂(NO){P(OPh)₃}] afforded [{Fe(CO)₂(NO)[P(OPh)₃]}Ag]_n. This latter compound reacted with o-phenanthroline giving [{Fe(CO)₂(NO)[P(OPh)₃]}Ag(c-phen)]_n.

The structure of the known²⁰³  $[Os(CO)_2(NO)(PPh_3)_2][ClO_4]$ , <u>167</u>, has been determined crystallographically;²⁰⁴ it was not possible to differentiate the CO and NO groups because of statistical disordering. Treatment of  $Os(CO)(PPh_3)_3$ HCl with p-MeC₆H₄SO₂N(NO)Me gave²⁰⁵  $Os(CO)(NO)(PPh_3)_2$ Cl, which, on reaction with AgPF₆ in acetone, afforded  $[Os(CO)(NO)(PPh_3)_2(acetone)][PF_6]$ . This is a useful intermediate giving, with ethylene,  $[Os(CO)(NO)(PPh_3)_2(C_2H_4)]$ , <u>168</u>. From ¹³C n.m.r. studies, it has been established unequivocally that the olefin undergoes



59

References p. 168

rotation about the Os  $-\bigcup_{C}^{L}$  bond and not about the C-C bond  $(\Delta G^{\neq} 9.5 \pm 0.2 \text{ kcal/mol})$ . Treatment of  $[Os(CO)(NO)L_2(acetone)][PF_6]$  (L =  $P(C_6H_{11})_3$  or PPh_3) with acetylenes afforded²⁰⁶  $[Os(CO)(NO)L_2(RC_2R^{\dagger})][PF_6]$ , <u>169</u> (R = R' = H, Ph or  $CO_2Me$ ; R = H, R' = Ph). These species, like their ethylene analogue, <u>168</u> are fluxional, undergoing rotation about the Os  $-\bigcup_{C}^{L}$  bond  $(\Delta G^{\neq}$  ranges from 11.5 -14.4 kcal/mol).



(169)

Treatment of Na₂[Fe(NO)(CN)₅].2H₂O with a,a'-bipyridyl gave²⁰⁷ cis- and trans-Fe(NO)(bipy)(CN)₃. The products of the one-electron reduction of [Fe(NO)(CN)₅]²⁻ to [Fe(NH₂OH)(CN)₅]³⁻ have been characterised²⁰⁸ spectroscopically. These include [Fe(NO)(CN)₅]³⁻ (unpaired electron on NO), [Fe(NHO)(CN)₅]⁴⁻ and [Fe(NO)(CN)₅]⁴⁻. These reduction processes resemble the stepwise reversible reduction of nitrobenzene to phenylhydroxylamine in alkali. A reversible reaction occurs between mercaptide ion and nitroprusside, viz.

$$\left[\operatorname{Fe(NO)(CN)}_{5}\right]^{2^{-}} + \operatorname{RS}^{-} = \left[\operatorname{Fe(N(O)SR}(CN)_{5}\right]^{3^{-}}$$

The adduct decomposes irreversibly to give  $[Fe(NO)(CN)_5]^{3-}$  and is thought to contain the group  $Fe - \frac{1}{N} \xi_{SB}^0$ .

In 0.1 M NaOH over 7 days,  $[Ru(NO)(NH_3)_5]^{3+}$  afforded  $[Ru(NH_3)_5(N_2)]^{2+}$  (25%), *cis*-(11%) and *trans*- $[Ru(NO)(NH_3)_4(OH)]^{2+}$  (8%). The mechanism of this reaction may be as follows:

$$[Ru(NO)(NH_3)_5]^{3+} + OH^- \rightleftharpoons [Ru(NO)(NH_3)_4(NH_2)]^{2+}$$

$$[Ru(NO)(NH_3)_5]^{3+} + [Ru(NO)(NH_3)_4(NH_2)]^{2+} \rightarrow [(NH_3)_5Ru(N(:O)NH_2)Ru(NO)(NH_3)_4]^{5+}$$

$$\int OH^-$$

$$[Ru(NH_3)_5(N_2)]^{2+} + [Ru(NO)(NH_3)_4(OH)]^{2+}$$

At high pH values in air  $[Ru(NH_3)_6]X_3$  (X = Cl or Br) was oxidised²¹⁰ to  $[Ru(NO)(NH_3)_5]^{3+}$ . In the presence of ¹⁵NH₃, the only nitrosylated product was  $[Ru(^{14}NO)(NH_3)_5]^{3+}$ , indicating that only coordinated ammonia is oxidised; there is no ¹⁴NH₃/¹⁵NH₃ exchange between  $[Ru(^{14}NH_3)_6]^{3+}$  and ¹⁵NH₃. Reaction of

 $[Ru(NO)(NH_3)_5]^{3+}$  with an excess of  $[Ru(NH_3)_6]^{3+}$  in the presence of OH⁻ gave trans- $[Ru(NO)(NH_3)_4(OH)]^{2+}$  in a process which is markedly pH-dependent. Rediolysis of  $[Ru(NO)(NH_3)_5]^{3+}$  in aqueous t-butanol gave²¹¹  $[Ru{N(:0)-CH_2CMe_2(OH)}(NH_3)_5]^{2+}$ , a complex of an alkynitroso ligand. The alkylation is viewed as occurring via  $CH_2CMe_2(OH)$  generated by attack of hydroxyl radicals on tbutanol. The complex can be regarded as either  $Ru^{II}-N(:O)R$  or  $Ru^{III}-N(:O^*)R$ .

The complexes  $[Ru(NO)(bipy)_2X]^{2^+}$  (z = 2, X = N₃, Cl, NO₂; z = 3, X = NH₃, pyridine or MeCN) underwent²¹² a voltammetrically reversible one-electron reduction followed by an irreversible one-electron process. Chemical reduction of the nitrosyl gave  $[Ru(NO)(bipy)_2Cl]^+$  or  $[Ru(NO)(bipy)_2(NCMe)]^{2^+}$ , and it seems clear that the first electron transfer process is associated mainly with the NO ligand. Photolysis of  $[Ru(NO)(bipy)_2Cl]^{2^+}$  in acetonitrile gave  $[Ru(bipy)_2(NCMe)Cl]^{2^+}$ . It was suggested that the redox properties of these ruthenium complexes could be regarded as consistent with the NO being present as a modified nitrosonium ion.

Protonation of Na₂[Ru(NO)(NO₂)₄(OH)] gave²¹³ Ru(NO)(NO₂)₂(OH)(H₂O)₂ which reacted with 1,3-dimethylbarbituric acid (HL) affording Ru(NL)L(NO₂)(OH)(H₂O) and *trans*-Ru(NO)L₂(OH). Attack by OH⁻ on the latter gave [Ru₂(NO₂)(OH)]²⁻ which produced, on addition of more barbituric acid, RuL₃(OH). Attack on this hydroxide by NO₂ and acid gave [Ru(NO)L₃]2H₂O, and further NaOH led to the formation of Na₂[RuL₃(NO₂)].

Treatment of  $Fe(CO)_5$  with iodine and  $\alpha,\gamma-dimethyl-\alpha,\gamma-dihydrooctaethyl porphyrin (H₂L) gave²¹⁴ LFe-O-FeL which afforded, with NO, Fe(NO)L. By reductive nitrosylation (NO/KOH/pyridine) of Fe(TPP)Cl (TPP²⁻ = tetraphenyl-porphyrinate) Fe(NO)(TPP) was formed.²¹⁵ From X-ray crystallographic studies it was established that the Fe-N-O bond angle was bent (149°), and that the Fe atom was displaced from the coplanar porphyrinato N atoms by 0.21Å. A series of other porphyrin and heme complexes have been nitosylated²¹⁶ using NO or HNO₂, and it was found that nitrosylheme complexes could nitrosylate secondary amines (e.g. <math>Ph_2NH \rightarrow Fh_2NNO$ ). Resonance Raman spectral studies have been made²¹⁷ of the NO adduct of haemoglobin.

Treatment of  $M(NO)_2(PPh_3)_2$  (M = Ru or Os) with  $RCO_2H$  (R = CF₃ or C₂F₅) afforded²¹⁸ Ru(NO)(PPh₃)₂(OCOR)₃ and either Os(NO)(PPh₃)₂H(OCOR)₂ or  $[Os(NO)_2(PPh_3)_2(OCOR)][OCOR]$ , depending on solvent. Prolonged treatment of  $Os(NO)(PPh_3)_2H(OCOR)_2$  with  $RCO_2H$  did not give the tri-carboxylate. It was suggested that the mechanism of formation of these complexes involved protonation of NO.

Reaction of Fe(diars)₂Cl₂ (diars = o-phenylenebis(dimethylarsine) with NaBPh₄ under CO gave²¹⁹ [Fe(CO)(diars)₂Cl][BPh₄], while with NO, [Fe(NO)(diars)₂-Cl][BFh₄] was formed. The nitrosyl could also be obtained by acidolysis of Fe(diars)₂Cl(NO₂). Zinc reduction of [Fe(H₂O)₆][ClO₄]₂ in the presence of diars and NO gave the blue  $[Fe(NO)(diars)_2] [ClO_4]_2$  which could be further reduced by Jones reduction affording  $[Fe(NO)(diars)_2] [ClO_4]$ . Salts of the latter could also be prepared by a Jones reduction of the product of nitrosylation of  $Fe(diars)_2Cl_2$  or  $[Fe(NO)(diars)Cl]Cl_2$ . The monocation,  $[Fe(NO)(diars)_2]^{\dagger}$  is diamagnetic, is thought to have trigonal bipyramidal geometry and is fluxional (figure 16).

### Figure 16



Reaction of  $\operatorname{Ru}(\operatorname{NO})^{3+}$  salts with acetylacetone gave²²⁰  $\operatorname{Ru}(\operatorname{acac})_2(\operatorname{hia})$ , <u>170</u> (Hhia = (3-hydroxyimino)acetylacetone),  $\operatorname{Ru}(\operatorname{NO})(\operatorname{acac})_2\operatorname{Cl}$ , and  $[\operatorname{Ru}(\operatorname{NO})(\operatorname{acac})_2]_{\rm h}$ , the last of which is said to contain bridging NO. Treatment of  $\operatorname{Ba}[\operatorname{Ru}(\operatorname{LH}_2)_3]_2$  with  $\operatorname{NaNO}_2$  gave²²¹  $\operatorname{Ru}(\operatorname{NO})(\operatorname{LH}_2)_3$  or  $\operatorname{Ru}(\operatorname{NO})(\operatorname{LH}_2)_2X$  (LH₃ = <u>171</u>). When the pH of a solution containing  $[\operatorname{NH}_4]_2[\operatorname{Os}(\operatorname{NO})\operatorname{Cl}_5]$  was adjusted²²² to 12 by KOH, followed by treatment with HCl,  $\operatorname{Os}(\operatorname{NO})(\operatorname{OH}_2.2H_2O$  was formed.

NOH

(171)



An LCAO molecular orbital study has been made²²³ of the mutual effect of ligands in  $[Ru(NO)X_5]^z$  complexes. It was noted that the NO group stabilises the trans-Ru-X bond (X = H₂O, NH₃, Cl or CN). Addition of HX and QX (Q = NH₄, K, Rb, Cs,  $(C_7H_{17})_3NH$ ; X = Cl, Br or I) to Na₂[Os(NO)(NO₂)₄(OH)] led to the formation²²⁴ of Q₂[Os(NO)X₅].

Dinitrosyl Complexes. Reaction of  $[Fe(CO)_{4}]^{2-}$  with NOCl gave²²⁵  $Fe(CO)_{2}(NO)_{2}$  which afforded, with an excess of nitrosyl chloride,  $Fe(NO)_{3}Cl$ , also obtainable directly from  $Fe(CO)_{5}$  and NOCl. Treatment of  $Na[(n^{5}-C_{5}H_{5})Fe(CO)_{2}]$  with NOCl in THF gave only  $[(n^{5}-C_{5}H_{5})Fe(CO)_{2}]_{2}$ , while this dimer and  $(n^{5}-C_{5}H_{5})Fe(CO)_{2}SnPh_{3}$  reacted with NOCl giving  $(n^{5}-C_{5}H_{5})Fe(CO)_{2}Cl$  and  $(n^{5}-C_{5}H_{5})Fe(CO)_{2}SnCl_{n}Ph_{3-n}$  (n = 0-3), respectively. With  $[Et_{4}N][SnCl_{3}]$ ,  $Fe(NO)_{2}L_{2}$  (L = CO or PF₃) gave²²⁶  $[Et_{4}N]_{2}[Fe(NO)_{2}(SnCl_{3})_{2}]$ , and it was observed that  $SnCl_{3}$  has n-acceptor properties similar to PCl₃. Reaction of Hg[Fe(CO)_{3}(NO)]_{2} with  $(n^{5}-C_{5}H_{5})_{2}M(ER)_{2}$  (M = Ti, ER = SMe, SEt, SeMe, SePh, TePh; M = Nb, ER = SPh, SePh, TePh) afforded²²⁷ the diamagnetic  $(n^{5}-C_{5}H_{5})_{2}M(\mu_{2}-ER)Fe(NO)L$  (M = Ti, L = NO; M = Nb, L = CO).

The structure of the previously reported²²⁸  $[Os(NO)_2(PPh_3)_2(OH)][PF_6]$ , <u>172</u>, has been determined crystallographically. The apical Os-N-O bond angle is 133.6° while the equatorial angle is 177.6°. The structure is comparable with that of  $[Ru(NO)_2(PPh_3)_2C1]^+$  (apical Ru-N-O 138°).²³⁰ The structure of  $Os(NO)_2(PPh_3)_2.2C_6H_6$  has been established crystallographically.²³¹ The molecule has pseudo tetrahedral geometry and although this configuration was rationalised in terms of  $Os(-II)(d^{10})/NO^+$  system, ESCA studies revealed that the NO groups have

Complex	M-N °	M-P (A)	N-0 (Å)	MNO (°)	۸MN (۶)	LML' (°)	
Fe(NO) ₂ (CO)(PPh ₃ ) ²	1.69-1.73	2.26	1.15	177-179	113-117	104	<u> </u>
Fe(NO) (diphos) b, c	1.66,1.65	2.24,2.25	1.18,1.18	178.8	125	87	
Fe(NO) (PPh3) d	1.65	2.27	1.19	178.2	124	112	
Ru(NO) (PPh ) e	1.76,1.78	2.34,2.35	1.19,1.19	178,171	139	104	
$Os(NO)_2(PPh_3)_2$	1.78,1.77	2.32,2.34	1.20,1.21	179,174	139	104	

Table 5	Structural	data	obtained	îrom	complexes	of	the	type	M(NO)	,LL'
---------	------------	------	----------	------	-----------	----	-----	------	-------	------

^a Disorder CO and NO ligands; V. G. Albano, A. Araneo, P. L. Bellon, G. Ciani, and M. Manassero, J. Organometal. Chem., 67 (1974) 413;

b diphos = Ph_PC=C(PPh_)CF_CF_CF_;

^c W. Harrison, and J. Trotter, J. Chem. Soc. A, (1971) 1542;

```
<sup>d</sup> Reference as in (a);
```

^e A. P. Gaughan, B. J. Corden, R. Eisenbere, and J. A. Ibers, Inorg. Chem., 13 (1974) 786. a large amount of negative charge. The structure of the compound may be compared with that of other similar complexes (Table 5). A number of general rules concerning coordination geometries of transition metal nitrosyls, especially 5-coordinate species, were proposed. These are as follows:

(i) without the assistance of special ligands, first row transition metals do not usually have enough reducing power by themselves to cause M-N-O bond angle bending; second row metals often do, and third row metals usually do. Thus  $Fe(CO)(NO)(FPh_3)_2Cl$  has trigonal bipyramidal (TBP) geometry²³² (linear Fe-N-O) whereas the related Ru and Os complexes should be square pyramidal (SP) (bent M-N-O). However, Ru(CO)(NO)(PPh_3)_2I may be an exception²³³ to this rule since v(NO) is very dependent on X (halide) and so also may be the geometry of the complex; (ii) the number and size of bulky ligands plays an important role in structure

determination: they usually occupy the least hindered positions and hence when one such large ligand is present it usually occupies a non-axial position. Two bulky ligands prefer to be *trans* to each other (axial in TBP and non-axial in SP) while with three, SP geometry is not known, all occupying equatorial positions in TBP. Thus  $Os(CO)(NO)(PPh_3)_2Cl$  has *trans*-non-axial PPh_3 ligands in SP geometry;

(iii) strong  $\pi$ -acceptor ligands such as CO and NO, and also  $\sigma$ -donors with large trans- influence (H and bent NO) prefer not to be trans to each other (isocyanide complexes may be similar in behaviour to phosphine complexes). Although hydride ligand normally prefers to be trans to PR₃ in preference to NO, the steric bulk of three phosphine ligands may overcome this. Thus Ru(NO)(PPh₃)₃H²³⁵ and [Os(CO)(NO)(PPh₃)₃]⁺²³⁶ have equatorial PPh₃ in TBP geometry, [Os(CO)₂-(NO)(PPh₃)₂]⁺²³⁶ and [Os(NO)₂(PPh₃)₂H]⁺ have trigonal bypyramidal structures, but [Os(NO)₂(PPh₃)₂CI]⁺²³⁸ is like [Os(NO)₂(PFh₃)₂(OH)]⁺, <u>172</u>, in having SP geometry (one bent NO group);

(iv) bidentate ligands such as Me₂NCH₂CH₂NMe₂, o-phenanthroline, c,a'bipyridyl, o-phenylenebis(dimethylarsine) and Ph₂PCH₂CH₂PPh₂ usually favour TBP structures with equatorial NO when two such ligands are present. Because of their small bite angles they prefer to span axial-equatorial sites rather than two equatorial sites. Also, because of unfavourably close ligand-ligand contacts, if two ligands are to occupy four coordination positions in one plane, TBP geometry is favoured over SP. This rule may not apply to xanthates, dithio-





(173)

64

(172)

carbamates or MeSCH₂CH₂S which is sterically less bulky. Thus [Ru(NO)(Ph₂PCH₂-CH₂PPh₂)₂]⁺ has a TBP structure;²³⁹

(v) special multidentate ligends promote one geometry over another. For example, HC(CH2PPh2)3 stabilises a trigonal bipyramid while tetraphenylporphyrinate stabilises square pyramidal or axial-equatorial-axial TBP geometry; (vi) ligends which deactivate the metal by removing electron density from it, thereby decreasing its reducing power, favour TBP geometry. An excessive number of CO or olefinic ligands, without the presence  $\Im$  strong  $\sigma$ -donors, will deactivate the metal. Replacing Cl by OCOR (R = perfluro-alkyl or -aryl) could shift the electronic balance and also effectively deactivate the metal; (vii) the "16-18 electron rule" is almost an infallible guide for all common coordination numbers. Occasionally "17 and 18-electron" complexes are formed by 4- and 5-coordinate species. If the integrity of NO is maintained (i.e. it is not converted to a hyponitrite ion), all "20-electron" systems must contain bent NO. Six-coordinate "17- and 18-electron" complexes contain linear NO groups; e.g. Os(NO)(PPh3)2Cl3.240 Six-coordinate species having "19-electron" configurations probably have a "partially" bent NO group with M-N-O distinctly larger than 120°, e.g. as in [Fe(NO)(diars)₂Cl]⁺.²⁴¹ All "16-electron" systems contain a linear M-N-O group, e.g. Ru(NO)(PPh₃)₂Cl.²⁴²

<u>Thionitrosyl, Nitrous Oxide and Nitrogen Complexes</u>. Treatment of  $OsL_2(NO)X_3$ (L = PMe₂Ph, AsPh₃; L₂ = bipy; X = Cl or Br) with  $S_2Cl_2$  in dichloromethane afforded²⁴³ Os(NS)L₂X₂Cl. Under pressure,  $[Ru(NH_3)_5(OH_2)]^{2+}$  reacted²⁴⁴ with N₂O giving salts of  $[Ru(N_2O)(NH_3)_5]^{2+}$ . Under argon,  $[Os(N_2)_2(NH_3)_4]^{2+}$  reacted²⁴⁵ with N-heterocyclic bases (L, pyrazine, N-methylpyrazinium salts, isonicotinamide or isonicotinic acid) giving  $[Os(N_2)L(NH_3)_4]^{2+}$ .

<u>Aryldiazo Complexes</u>. The structure of the previously reported²⁴⁶  $[Fe(CO)_2(N_2Ph)-(PPh_3)_2][BF_4]$ , <u>173</u> has been determined crystallographically.²⁴⁷ The short Fe-N (1.70A) and N-N (1.20A) distances indicate multiple bonding. Structural and spectroscopic data suggest that  $PhN_2$  is a good *n*-acceptor but poor  $\sigma$ -donor, although in neither aspects is it as effective as NO.

Reaction of  $M(CO)_{3}(PPh_{3})_{2}$  (M = Ru, Os) with  $[PhN_{2}][PF_{6}]$  afforded²⁴⁸  $[M(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}][PF_{6}]$  which is analogous to  $[Fe(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}]^{\dagger}$ . <u>173</u>.²⁴⁷ Treatment of  $[Os(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}]^{\dagger}$  with  $BH_{4}^{\dagger}$  gave  $Os(CO)_{2}(PPh_{3})_{2}H_{2}$ while its ruthenium analogue, in the presence of additional  $PPh_{3}$ , provided  $Ru(CO)(PPh_{3})_{3}H_{2}$ . Nucleophilic attack by X⁻ (F, Cl, Br, I, NCO, N₃, NO₂, HCO₂ or  $MeCO_{2}$ ) afforded  $Os(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}X$  which could be protonated by  $HPF_{6}^{\dagger}$ giving  $[Os(CO)_{2}(NHNPh)(PFh_{3})_{2}X][PF_{6}]$ . Treatment with CN⁻, NCS⁻, SPh⁻ or OH⁻ resulted in decomposition but with thiocyanate, a low yield of  $Os(CO)_{2}(PPh_{3})_{2}^{-}$   $(NCS)_{2}$  was isolated. Similar treatment of  $[Ru(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}]^{\dagger}$  afforded  $Ru(CO)_{2}(N_{2}Ph)(PPh_{3})_{2}X$  (X = Cl, Br, I or NCO) and the structure of  $M(CO)_{2}(N_{2}Ph)$ - $(PPh_{3})_{2}X$  is thought to be <u>174</u>. The formato, acetato and nitrito complexes

References p. 168

contain monodentate X and  $Os(CO)_2(N_2Ph)(PPh_3)_2(NO_2)$  exists as two isomers (figure 17). With iodide or nitrite ion,  $[Ru(CO)_2(N_2Ph)(PFh_3)_2]^+$  afforded a



mixture of  $\operatorname{Ru}(\operatorname{CO}_2(\operatorname{N_2Ph})(\operatorname{PPh}_3)_2X$  and  $\operatorname{Ru}(\operatorname{CO})(\operatorname{N_2Ph})(\operatorname{PPh}_3)_2X$ , the former being nore stable at low temperature. The latter would not accept CO to regenerate the latter but, in benzene, gave  $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2X_2$ . Reaction of  $\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_3H_2$ with  $[\operatorname{PnN}_2][\operatorname{PF}_6]$  afforded  $[\operatorname{Ru}(\operatorname{CO})(\operatorname{NHNPh})(\operatorname{PPh}_3)_3H][\operatorname{PF}_6]$  which gave with CO  $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{NHNPh})(\operatorname{PPh}_3)_2H][\operatorname{PF}_6]$ ; the osmium analogue of the latter was obtained by reaction of  $\operatorname{Os}(\operatorname{CO})_2(\operatorname{PPh}_3)_2H_2$  with  $[\operatorname{PhN}_2][\operatorname{PF}_6]$ . Neutralisation of these last



complexes gave  $M(CO)_2(N_2Ph)(PPh_3)_2H$ , <u>175</u>. The ruthenium hydride changed from green to brown and then decarbonylated giving  $Ru(CO)(N_2Ph)(PPh_3)_2H$ , which contains linear Ru-N-NPh, <u>176</u>; Os(CO)(N_2Ph)(PPh_3)_2H was produced by u.v. irradiation of the corresponding dicarbonyl. These complexes could be produced alternatively in the following sequence of reactions:

 $M(CO)(PPh_{3})_{3}H_{2} + PhN_{2}^{+} \rightarrow M(CO)(NHNPh)(PPh_{3})_{3}H^{+}; + NaOH \rightarrow M(CO)(N_{2}Ph)PPh_{3})_{2}H$ Treatment of  $Os(CO)(N_{2}Ph)(PPh_{3})_{2}CI$  with an excess of HCl gave  $Os(CO)(NHNPh)-(PPh_{3})_{2}Cl_{2}$ , also produced by reaction of  $Os(CO)(NHNPh)(PPh_{3})_{2}HCl$  with an excess of HCl. This last hydrido chloride may be formed by stoichiometric reaction of  $Os(CO)(N_{2}Ph)(PPh_{3})_{2}H$  with HCl. In the presence of LiCl,  $Os(PPh_{3})_{3}Cl_{2}$  reacted with  $PhN_{2}^{+}$  giving  $Os(N_{2}Ph)(PPh_{3})_{2}Cl_{2}$  which does not react with H⁺ and has a structure similar to  $Ru\{N_{2}(p-MeC_{6}H_{4})\}(PPh_{3})_{2}Cl_{3}$ .²⁴⁹

The structure of  $Os(CO)(N_2Ph)(PFh_3)_2H.CH_2Cl_2$ , <u>176</u> (M = Os), has been confirmed²⁵⁰ crystallographically. The Os-N distance (1.87A) is unusually long,

66



(176)



(177)





significantly more so than comparable distances in related Ru and Os nitrosyl and aryldiazo complexes; only  $[Os(CO)_2(NO)(PFh_3)_2][ClO_4]has^{251}$  a comparably long Os-N bond length (1.89A). The Os-N-N bond angle is 171°. The structure of  $[Ru(CO)_2(NHNPh)(PFh_3)_2H][ClO_4].CH_2Cl_2$ , <u>177</u>, has also been determined crystallographically.²⁵² The Ru-N distance is 2.09A and the *cis*-diazene group behaves as a normal  $\sigma$ -donor ligand. There is a short non-bonded contact between the diazene N-H and the *ortho*-H of the phenyl group causing rotation of the phenyl group about the N-C bond.

Treatment of  $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{HCl}$  with  $\operatorname{ArN}_2X$  (Ar =  $p-\operatorname{MeC}_6\operatorname{H}_4$ , o-, m- or  $p-\operatorname{MeOC}_6\operatorname{H}_4$ ; X =  $\operatorname{BF}_4$  or  $\operatorname{PF}_6$ ) gave²⁵³ [ $\operatorname{Ru}(\operatorname{N}_2\operatorname{Ar})_2(\operatorname{PPh}_3)_2\operatorname{Cl}]X$  which is believed to be similar to [ $\operatorname{Ru}(\operatorname{NO}_2(\operatorname{PPh}_3)_2\operatorname{Y}]^+$  in having a bent and a linear aryldiazo group. With  $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$ , [ $\operatorname{Ru}(\operatorname{N}_2\operatorname{Ar})(\operatorname{PPh}_3)_2\operatorname{Cl}_2$ ]_n[X]_n and [ $\operatorname{Ru}_2\{\operatorname{N}_2(p-\operatorname{MeOC}_6\operatorname{H}_4)\}_2(\operatorname{PPh}_3)_3\operatorname{Cl}_3$ ][ $\operatorname{PF}_6$ ] were formed; the former may be monomeric and five-coordinate, or dimeric,  $\underline{178}$  while the latter may have the structure,  $\underline{179}$ . Chlorination of [ $\operatorname{Ru}\{\operatorname{N}_2(p-\operatorname{MeC}_6\operatorname{H}_4)\}_2^-$   $(PPh_3)_2 Cl][BF_4] \text{ afforded } Ru\{N_2(p-MeC_6H_4)\}(PPh_3)_2 Cl_3 \text{ and } [p-MeC_6H_4N_2]Cl. In acetonitrile, Ru(CO)(PPh_3)_3 HCl reacted with <math>[ArN_2][PF_6]$  (Ar = o, m or p-MeOC_6H_4) giving  $[Ru(NENAr)(NCMe)(PPh_3)_2 Cl][PF_6]$ , and with isonitriles giving  $Ru(CO)(CNR) - (PPh_3)_2 HCl (R = Pr^i, Bu^t \text{ or } p-ClC_6H_4)$ . In methanol,  $Ru(CO)_2(PPh_3)_2 HCl$  reacted with gaseous HCl giving  $Ru(CO_2)(PPh_3)_2 Cl_2$  and  $Ru(CO)_2(PPh_3)_2$ ,  $\underline{180}$ , while nitrous acid gave  $Ru(NO)(PPh_3)_2 Cl_3$ . The structures of  $Ru(NO)(PPh_3)_2 Cl_3$  and  $Ru\{N_2(p-MeC_6H_4)\}(PPh_3)_2 Cl_3 \cdot CH_2 Cl_2$  have been compared²⁵⁴ crystallographically. Both are pseudooctahedral species, the Ru-N-Q (Q = 0 or  $N(p-MeC_6H_4)$ ) being essentially linear. In the nitrosyl the Ru-N(O) distance is 1.74Å while the comparable length in the aryldiazo complex is 1.78Å.

Extensive isotopic labelling studies ( $^{15}N$  and D) have been made²⁵⁵ of the N-N vibration in aryldiazo and diazene complexes. There is a resonance interaction of  $v_{NN}$  with weak phenyl vibrational modes. From relative intensities of respective bands, unperturbed values of  $v_{NN}$  have been estimated, and correlations made with the bonding mode of the ArN_p group.

### MONO-OLEFIN COMPLEXES

A study has been made²⁵⁶ of vibrational force constants in  $Fe(CO)_{\downarrow}(C_{2}H_{\downarrow})$ , and comparison has been made with other  $\pi$ -ethylene complexes. The  $Fe-C_{2}H_{\downarrow}$  bond is weaker than that in the  $Pt-C_{2}H_{\downarrow}$  system. From electric dipole moment measurements of a series of  $\pi$ -olefin complexes  $Fe(CO)_{\downarrow}L$  (L = trans PhCH=CHCOR (R = Me or Fh), trans-FhCH=CHCHO,  $CH_{2}$ :CHO and  $CH_{2}$ :CHCN), it was found²⁵⁷ that the ligand plane is never parallel to the axis of the trigonal pyramid formed by  $Fe(CO)_{\downarrow}L$ . In the carbonyl-containing ligands, the CO group was always displaced from the C=C-C plane. It was noted that the structure of  $Fe(CO)_{\downarrow}$ -( $CH_{2}$ :CHCN) in solution was similar to that in the solid state.²⁵⁸ The ketonic ligands have the same conformation in the  $Fe(CO)_{\downarrow}$  complexes as they do as free ligands, but the aldehydes, present only as the *S*-trans-conformers in the free state, form both isomers when bound to  $Fe(CO)_{\downarrow}$ .

The kinetics of the transformation of  $Fe(CO)_2(PhCH:CHCOR)$  into  $Fe(CO) - (n^2-PhCH:CHCOR)$  are first order²⁵⁹ with respect to the tetracarbonyl species. The results cannot be interpreted in terms of intramolecular chelation, and a possible mechanism is outlined below:

Helogenated olefins (CH₂:CHF, CH₂:CF₂, CHF:CF₂, CHBr:CF₂, CHCl:CF₂, CF₃CF:CFCF₃, CF₃CH:CHCF₃, (CF₃)₂, C:C(CF₃)₂, CCl₂:CCl₂) reacted²⁶⁰ with Fe₂(CO)₉ giving Fe(CO)₄(olefin). Thermal decomposition of these complexes gives rise to the original olefin and Fe(CO)₅, although traces of isomerised olefin may be detected, e.g.  $Fe(CO)_{4}(trans-CF_{3}CH:CHCF_{3}) \rightarrow cis-CF_{3}CH:CHCF_{3}$ . This effect may arise via an intermediate Zwitterion in which rotation about the original double bond is possible (Scheme 15).

Scheme 15



Reaction of  $\operatorname{Fe}_2(\operatorname{CO})_9$  with  $\operatorname{CF}_2:\operatorname{CFI}$  afforded  $\operatorname{Fe}(\operatorname{CO})_4(\operatorname{CF:CF}_2)$  and  $\left[\operatorname{Fe}(\operatorname{CO})_4(\operatorname{C}_2\operatorname{F}_3\operatorname{I})\right]_2$ .

Treatment of  $\operatorname{Fe}_2(\operatorname{CO})_9$  or  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  with  $\operatorname{Bu}_4^t \operatorname{C}_6$  (a hexa-pentaene) gave 261 <u>181</u> and <u>182</u>, while  $\operatorname{Fe}_3(\operatorname{CO})_{12}$  reacted with  $(\operatorname{Me}_2\operatorname{C}(\operatorname{Cl})\operatorname{Ce}_2)_2$  in the presence of zinc dust giving a complex  $\operatorname{Fe}_2(\operatorname{CO})_6(\operatorname{C}_{10}\operatorname{H}_{12})$  not wholly identical with <u>182</u>. Reaction of  $\operatorname{Fe}_2(\operatorname{CO})_9$  with an excess of acenaphthene gave <u>183</u>, the structure determination of which is regarded²⁶² as being highly accurate.

Treatment of the methylenecyclopropane esters, <u>184</u> (R = Me or Et) with  $Fe_2(CO)_9$  afforded a mixture of <u>185</u> and <u>186</u>. The much slower rate of formation of the ethyl esters compared to their methyl homologues was attributed to steric rather than electronic factors. Treatment of <u>185</u> with CuBr₂ afforded the original cyclopropane together with <u>187</u>, whereas <u>186</u> produced only the free



69





(185)



(186)



cyclopropane. Conversion of <u>185</u> to <u>186</u> was effected using NaOEt in ethanol, in s process which parallels the same reaction with the free cyclopropane. Resolved (+)-Feist's acid could be methylated by  $CH_{2}N_{2}$  giving (+)-<u>184</u> (R = Me), which could be successively treated with Fe, (CO), NaOEt/EtOH and CuBr, giving (-)-184 (R = Me). These data contradict previous findings which suggested that the cyclopropane ring would be broken during the formation of iron carbonyl complexes. However, the ring-opening reactions of methylenecyclopropanes by Fe₂(CO)₀ have received study²⁶⁵ (Scheme 16). A single crystal X-ray study has teen made of <u>188</u>, and <u>189</u> is detected as a minor reaction product whose yield is improved if the reaction is carried out under CO (its structure has been preliminarily confirmed crystallographically). By using deuterated methylenecyclopropane precursor (R = D), 188 (R = D) and 189 (R = D) were produced exclusively with no H/D scrambling. A plausible intermediate in Scheme 16 is 190, molecular models of which show that the endo-CR₀OH group is ideally placed for intramolecular attack on coordinated CO giving 191. This mechanism accounts for the formation of 188 and 189 from either cis- or trans-bis(hydroxymethylenecyclopropane), since the stereochemistry of one of the ring C atoms must be lost





in the ring opening process. It may be noted that the stereochemistry of the other C atoms must be retained. When <u>188</u> was refluxed in ether, rearrangement to <u>192</u> occurred,²⁶⁶ in a process which occurred with regiospecificity but extensive racemisation (Scheme 17).



Similar treatment of <u>189</u> gave a mixture of <u>193</u> and <u>194</u> without H/D scrambling. The ratio and optical activity of <u>193</u> and <u>194</u> were identical if <u>189</u> rearranged in refluxing hexane, and <u>193</u> and <u>194</u> were not interconverted, nor did they show any loss of optical activity after prolonged refluxing in hexane. The proposed mechanism of rearrangement is shown in Scheme 18. The only intermediate which can give rise to <u>193</u> and <u>194</u> is <u>195</u>, formation of which must arise via a direct





 $O = \bigcup_{\substack{CR_2H\\Fe(CO)_3}}^{R}$ 

(193)


insertion of the metal into a C-H bond. Formation of the products must occur via a direct hydrogen transfer from the metal to the terminal C atom of the vinyl group. It was conclusively demonstrated that a metal-promoted suprafacial 1,3-hydrogen shift, giving <u>194</u> (R = H) of opposite configuration to <u>193</u> (R = H) (which was not observed), cannot effectively compete with the allyl-metal-hydride mechanism as a low energy isomerisation process in this system.

Bicyclo[4,2,0]oct-7-ene is catalytically rearranged²⁶⁷ by  $Fe_2(CO)_9$  to a mixture of hydrocarbons probably via <u>196</u> as an intermediate. Iron pentacarbonyl induced²⁶⁸ stereospecific CO insertion into the cyclobutane rings of a and  $\beta$ -pirene (Scheme 19). Smooth cleavage of the C-O bond in alkenyl carboxylates to afford ruthenium carboxylato complexes which released alkene under ambient conditions was achieved²⁶⁹ using Ru(PPh₂)_hH₂ (Scheme 20).

These reactions proceeded with the formation of a small amount of ethane or propane, and could also be achieved with  $\operatorname{Ru}(\operatorname{PPh}_2\operatorname{R})_4\operatorname{H}_2$  (R = H or Me) but not with  $\operatorname{Ru}(\operatorname{PPh}_3)_4\operatorname{HCl}$ . Ethyl-, amyl - and phenyl-acetates did not react and while  $\operatorname{Fe}(\operatorname{PPh}_2\operatorname{Et})_3(\operatorname{N}_2)\operatorname{H}_2$  afforded, with  $\operatorname{MeCO}_2\operatorname{CH=CH}_2$ , N₂, ethylene and ethane;  $\operatorname{Fe}(\operatorname{diphos})_2\operatorname{H}_2$  was inert.

References p. 168



(196)

Scheme 19

74



Scheme 20



#### ALLYL COMPLEXES

<u>Mono-allylic species</u>. Mössbauer spectral studies have been made²⁷⁰ of  $[Fe(CO)_4(n^3-C_3H_5)]^{+}$ ,  $[Fe(CO)_3(n^3-C_3H_5)C1$  and related  $\pi$ -allyl complexes, and the isomer shifts and quadrupole splittings discussed in terms of electronic configuration and geometry. The ¹³C n.m.r. spectra of  $Fe(CO)_3^{-}(n^3-C_3H_5)X$  (X = halide, ONO, OCOMe or OCOCF₃) and  $Fe(CO)_3(n^3-C_3H_4R)X$  (R = 1-Me or 1-Fh, X = Cl, Br or OCOCF₃; R = 2-Me or 2-Br, X = halide, ONO₂ or OCOCF₃) have been measured²⁷¹ and the influence of X and R on chemical shifts of allyl and carbonyl C atoms discussed. It was noted that the influence of increasing polarity of the Fe-X bond had a significant effect on  $\delta(C)$ . ESR studies have been made²⁷² of the system

$$[\operatorname{Fe}(\operatorname{CO})_{2^{\mathrm{L}}}(\mathfrak{n}^{3}-\mathfrak{C}_{3^{\mathrm{H}}_{5}})]_{2} \rightleftharpoons 2[\operatorname{Fe}(\operatorname{CO})_{2^{\mathrm{L}}}(\mathfrak{n}^{3}-\mathfrak{C}_{3^{\mathrm{H}}_{5}})]$$

where L = CO, tertiary phosphine or  $P(OMe)_3$ . The neutral allyl species forms an adduct with olefins (1- or 2-hexene, 2-butyne) giving  $Fe(CO)_2L(olefin)$ - $(\eta^LC_3H_5)$ , and the system isomerises 1-hexene to *trans*-2-hexenes, initiates vinyl polymerisation and polymerisation of allene to the solid  $EC(:CH_2)-CH_2\frac{1}{3}x$ 

The species  $[Fe(CO)_{l_1}(n^3-allyl)]^+$  having *anti-l* substituents are isomerised to the corresponding *syn*-isomers on heating in  $CF_3CO_2H$  or  $SO_2$  (Scheme 21). However, 197 reacts with HCl via a series of intermediates as shown.

Scheme 21



Epoxidation of (E,E)-2,4-, (Z,Z)-2,4-, and (Z,E)-2,4-hexadienes afforded²⁷⁴ <u>198</u>, <u>199</u> and a mixture of <u>200</u> and <u>201</u>, respectively. Reaction of these with Fe(CO)₅ under light in benzene gave <u>202</u>, <u>203</u> and a mixture of <u>204</u> and <u>205</u>, respectively; the structure of <u>204</u> was confirmed crystallographically. It was observed that in the conversion of <u>198</u> to <u>202</u>, retention of configuration occurred at C(2) relative to C(3); this is tantamount to rotation about C(2)-C(3). Conversion of <u>199</u> to <u>203</u> occurred with overall retention of configuration.



Further studies have been made of the nature of the intermediates produced by protonation of diene iron tricarbonyl complexes. Thus, protonation of 206 occurred²⁷⁵ according to Scheme 22, the n.m.r. spectra being consistent with the equilibrium shown, and that of 207 being similar to that reported earlier.²⁷⁶ However, treatment of  $Fe(CO)_3(n^3-C_3H_5)I$  with AgOCOCF₃ afforded  $Fe(CO)_3(n^3-C_3H_5)-(OCOCF_3)$  which, in HEF₄, produced  $[Fe(CO)_3(n^3-C_3H_5)]BF_4$ ; this, in turn, decomposing to  $[Fe(CO)_4(n^3-C_3H_5)]^+$ . Spectral studies of a similar reaction undertaken with 206 are consistent with the processes outlined in Scheme 23. This Scheme is preferable to the description²⁷⁶ of protonated liene complexes as, for example, 208. Treatment of  $[Fe(CO)_4(n^3-1-MeC_3H_4)]^+$  with CdR₂(R = Fh. FhCH₂ or C₆H₄) afforded²⁷⁷ mixtures of unstable alkylated butene complexes of Fe(CO)₄.



On chromatography, cis-RCH₂CH=CHMe and some RCH(Me)CH:CH₂ could be recovered. Treatment of Na[Fe(CO)₃( $n^3-C_3H_5$ )] with benzyl chloride gave²⁷⁸ a mixture of Fe(CO)₄(CH₂:CHCH₂CH₂Fh) and Fe(CO)₃( $n^4$ -MeCH:CHCOPh) in the ratio 10:1.

Substituted butadiene iron tricarbonyl complexes react²⁷⁹ with the fluoroolefins,  $CF_2$ :CFR (R = F, CF₃, Cl or H) giving a variety of complexes as





shown in Scheme  $\underline{24}$ . Some reactions of these compounds with P(OMe)₃ are also included in the Scheme. Reaction of Fe(CO)_n(*trans*-cinnemaldehyde) (n = 3 or 4) with C₂F₄ afforded the ferracyclopentanes  $\underline{209}$  and  $\underline{210}$ . Treatment of Fe(CO)₃-(Fh₂PC₆H₄CH:CH₂) with CF₂:CFR (R = F, Cl, H or CF₃) gave  $\underline{211}$ . The mechanism of addition of fluorocarbon is thought to involve zwitterionic intermediates (Scheme  $\underline{25}$ ) and addition of radical inhibitors had no effect on the reactions. Treatment of Ru(CO)₃(C₆H₈) with CF₂:CFCF₃ afforded  $\underline{212}$  only. With (CF₃)₂CO,



methyl- and dimethylbutadiene iron tricarbonyl complexes produced²⁸⁰  $\underline{213}$  and  $\underline{214}$ ; the latter, on heating in boiling hexane, afforded  $\underline{215}$  and  $\underline{216}$ .

The addition of acrylonitrile to  $\operatorname{Ru}(\operatorname{CO}_3(n^3-c_3H_5)\operatorname{Cl} \operatorname{gave}^{281} [\operatorname{Ru}(\operatorname{CO}_2-(n^1-c_3H_5)(n^2-\operatorname{CH}_2:\operatorname{CHCN})\operatorname{Cl}]_n$  which, in the solid state, contained bridging Cl. Treatment of this with PFh₃ gave  $\operatorname{Ru}(\operatorname{CO}_2(n^1-c_3H_5)(n^2-\operatorname{CH}_2:\operatorname{CHCN})(\operatorname{PFh}_3)\operatorname{Cl}$ . With acetylenes, RC:CR' (R = R' = H or Ph; R = Ph, R' = H), [Ru(CO)_2{OCC(R):C(R')-C_3H_5}Cl]_2 was formed by insertion into the  $n^1$ -allyl Ru bond. Treatment of this with HCl afforded  $\alpha,\beta$ -unsaturated aldehydes. When R = R' = H, reaction with CO in methanol gave n-hexanoate while butadiene afforded <u>217</u>. With EtO₂CC:CCO₂Et, <u>218</u> was produced, while HC:CCO₂Et gave either Ru(CO)_2{OCCH:C(CO_2Et)C_3H_5}Cl or Ru(CO)_2{OCC(c_2Et):CHC_3H_5}Cl. Hydrogen reacted with Ru(CO)_3(n^3-c_3H_5)Cl at 1-15 atm. giving, initially, Ru(CO)_3(c_3H_6)HCl which rearranged to Ru(CO)_3(CH_2CH_2Me)Cl]_n and

Fe (CO)



80



(210)















(217)

Cl

Řu— (CO)₃

(218)

C Ru

**OEt** 

CI











Ru C-0

ŏ

_Cı

(219)





EtO2C

RU RU C









 $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{COCHMe}_2)\operatorname{Cl}]_n$ , which are mixtures of isomeric polymeric complexes, possibly <u>219</u>. With PPh₃, <u>219</u> gave isomers of  $\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_2(\operatorname{OCC}_3\operatorname{H}_7)\operatorname{Cl}$ . At atmospheric pressure,  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{n}^3-\operatorname{C}_3\operatorname{H}_5)\operatorname{Cl}$  reacted with hydrogen giving a dark red solid, possibly  $[\operatorname{Ru}(\operatorname{CO})_3\operatorname{Cl}]_2$  containing a Ru-Ru bond, possibly analogous to  $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)\operatorname{Cl}]_2$ .²⁸² The system  $\operatorname{Ru}(\operatorname{CO})_3(\operatorname{n}^3-\operatorname{C}_3\operatorname{H}_5)\operatorname{Cl}/\operatorname{H}_2$  is an effective catalyst for the homogeneous hydrogenation of terminal, internal and cyclic alkenes and carbonyl compounds. It was noted that very fast isomerisation occurred during the hydrogenation process and the catalytic system is different from those involving  $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{HCl}$  and  $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{H}(\operatorname{O}_2\operatorname{CR})$ .²⁸³ The overall reaction with ethylene and hydrogen is illustrated in Scheme <u>26</u>. The rate determining step in this system appears to be the alkene coordination by Ru.

References p. 168

 $(CO)_{3}$ 

82

Scheme 26



Fe(CO)₃



(220)





(221)

(222)







(225)

(224)

Figure 18



Reaction of Fe₂(CO)₉ with 2,3-bis(bromomethyl)-1,3-butadiene afforded²⁸⁴ a mixture of <u>220</u>, <u>221</u> and <u>222</u>. Treatment of <u>221</u> with concentrated H₂SO₄ gave <u>223</u> and <u>224</u>, and from the latter, 1,4-diisopropenylbenzene and 1,4-diisopropenyl-1,4-cyclohexadiene were released on addition of ceric ion. 1,2-Cyclononadiene reacted²⁸⁵ with Fe₂(CO)₉ giving <u>225</u>, the structure of which was confirmed crystallographically (Fe-Fe 2.97A). The hydrocarbon ligand is bound asymmetrically and the fluxional properties of the molecule were interpreted as in figure <u>18</u>. Reaction of 1,2,6,7-cyclododecatetraene and 1,2,9,10-cyclohexadecatetraene with Fe₃(CO)₁₂ in boiling hexane afforded²⁸⁶ <u>226</u> and <u>227</u>, respectively. Treatment of the former with Ce¹⁴⁺ gave 1,2,3,4-tetrahydronaphthalene. The structures of Ru(PF₃)₂(C₁₀H₁₆)Cl₂, <u>228</u> and Ru(PF₃)₂(PPh₃)₂Cl₂ have been determined²⁸⁷ crystallographically. The former is based on a trigonal bipyramidal geometry and the Ru-PF₃ bond is 2.24Å. In the latter, which has *cis*-Cl and *cis*-PF₃ ligands, with *trans*-PPh₃, the Ru-PF₃ distances are 2.16-2.18Å.

Photolysis of 9-oxabicyclo[ $\delta$ .1.0]nona-2,4, $\delta$ -triene in the presence of Fe(CO)₅ afforded²⁸⁸ <u>229</u>, which subsequently rearranged as shown in Scheme <u>27</u>; treatment with Me₃NO subsequently led to the isolation of 9-oxabicyclo[4.2.1]-nona-2,4,7-triene as shown.



















(231)



Reaction of  $Fe(CO)_3(C_8H_8)$  with AlCl₃ in benzene afforded²⁸⁹ <u>230</u> (R = H) which has been prepared previously²⁹⁰ from barbaralone and  $Fe_2(CO)_9$ . Similar treatment of  $Fe(CO)_3(C_8H_7Me)$  gave <u>230</u> (R = Me). In acetic acid,  $BF_3.OEt_2$ reacted with  $Fe(CO)_3(C_8H_8)$  giving initially  $Fe(CO)_3(C_8H_7OH)$  which, on protonation with  $HPF_6$ , gave <u>231</u> (R = R' = H). The mechanism for the formation of <u>230</u>, which is derived from the isolation of <u>231</u>, is shown in Scheme <u>28</u>. Carbonylation of <u>230</u> (R = H) afforded barbaralone. Treatment of  $Fe(CO)_3(C_8H_{10})$  ( $C_8H_{10}$  = cycloocta-1,3,5-triene) with AlCl₃ afforded <u>232</u> while the related norbornadiene complex gave a mixture of <u>233</u> and <u>234</u>. The latter was also produced from quadricyclene and  $Fe_2(CO)_9$ . The reactions of  $Fe(CO)_3(C_8H_{11}R)$  with AlCl₃ are summarised in Scheme <u>29</u>; it was observed that cyclo-hexa-1,3-diene, -heptatriene, and -1,5-octadiene tricarbonyl iron complexes did not react with AlCl₃.

Scheme 28





Scheme 29



# CYCLOBUTADIENE AND TRIMETHYLENEMETHANE COMPLEXES

The electronic structure of the group  $Fe(n^4-C_{\downarrow}H_{\downarrow})$  and its reactivity has been compared²⁹¹ with those of the isoelectronic  $Ni(n^2-C_2H_{\downarrow})$ ,  $Co(n^3-C_3H_5)$ ,  $Mn(n^5-C_5H_5)$  and  $Cr(n^6-C_6H_6)$  groups. The mass spectra of benzocyclobutadiene complexes  $Fe(CO)_3(n^4-C_8H_6)$  and  $Fe(CO)_2L(n^4-C_8H_6)$  (L = PPh₃, AsPh₃ or SbFh₃) have been measured.²⁹² Structural studies of <u>235</u> have revealed²⁹³ that the Fe atom is displaced from its central position above the four-membered ring due to interactions of the CO groups and the four-membered ring atoms and between the CO and methyl groups.

Treatment of  $Fe(CO)_3(n^4-C_4H_3CHO)$  with  $Ph_3PCRR'$  afforded²⁹⁴ the vinyl complexes  $Fe(CO)_3(n^4-C_4H_3CH:CRR')$  (R = R' = H, Me; R = H, R' = Ph, Me or  $CO_2Et$ ). Reaction of  $Fe(CO)_3(n^4-C_4H_4)$  with sulphuric acid in acetic anhydride gave²⁹⁵  $Fe(CO)_3(C_4H_3SO_3H)$ , and related ethyl-substituted derivatives were prepared



Fe Fe

(236)

similarly. Treatment of  $Fe(CO)_3(n^4-C_4H_3SO_3H)$  with  $PCl_5$  gave,²⁹⁶ as expected,  $Fe(CO)_3(n^4-C_4H_3SO_2C1)$ , which, on addition of RR'NH, afforded  $Fe(CO)_3(n^4-C_4H_3NRR')$ (R = Buⁿ, PhCH₂, C₃H₅, R' = H, Me or Et).

Photolysis of  $Fe(CO)_3(n^4-C_4H_4)$  in the presence of  $P(OMe)_3$  gave²⁹⁷  $Fe(CO)_2^{-}$ { $P(OMe)_3$ } $(n^4-C_4H_4)$ . However, in THF under nitrogen at low temperatures and at appropriate wavelengths, the binuclear  $Fe_2(CO)_3(n^4-C_4H_4)_2$ , <u>236</u>, was produced (an assumed intermediate is  $Fe(CO)_2(N_2)(C_4H_4)$ ). Under CO, the dimer reverted to  $Fe(CO)_3(n^4-C_4H_4)$  while, with  $P(OMe)_3$ , a mixture of  $Fe(CO)_3P(OMe)_3$ ,  $2(n^4-C_4H_4)$  and Fe(CO){ $P(OMe)_3$ } $_2(n^4-C_4H_4)$  was formed. By carefully controlling the conditions of photolysis of  $Fe(CO)_3(n^4-C_4H_4)$  in THF in the absence of N₂, an intermediate,  $Fe(CO)_2(N_2)(n^4-C_4H_4)$ , could be detected, but on removal of the solvent, <u>236</u> was generated apparently via the species  $(n^4-C_4H_4)(CO)_2Fe=Fe(CO)_2(n^4-C_4H_4)$ . These observations prompted the suggestion that PR₃ reacts with photolytically generated Fe(CO)₄ as follows:

$$2Fe(CO)_{4} \xleftarrow{(OC)_{4}Fe=Fe(CO)_{4}} \xleftarrow{-CO} (OC)_{3}Fe \xleftarrow{Fe(CO)_{3}} Fe(CO)_{3}$$

$$2FR_{3}$$

$$2Fe(CO)_{4}(PR_{3}) \qquad Fe(CO)_{4}(PR_{3}) + Fe(CO)_{3}(PR_{3})_{2}$$

Treatment of cis-1,2-dichlorobutene with Na[Fe(CO)₂( $\eta^5-C_{g}H_{g}$ )] afforded²⁹⁸ the 2-chlorocyclobutenyl complex 237, whose reactions, particularly with Ag⁺, are summarised in Scheme 30. Of particular interest is the intermediate cyclobutadiene complex 238. It was noted that 237 readily hydrolysed over elumina to give  $Fe(CO)_2(n^5-C_5H_5)(CH_2CH:CHCHO)$ . The adducts formed between 238 and other 1,3-dienes are cited as strong evidence for the existence of a  $\eta^2$ -cyclobutadiene complex. The alternative mechanism, involving generation of free C, H,, would require dissociation of 238 followed by the formation of the Diels-Alder adduct. This process is probably unlikely since displacement of olefins from [Fe(CO)2- $(n^2-olefin)(n^5-C_5H_5)]^+$  requires that the rate determining dissociative step has an activation energy of 16-25 kcal/mol. Cyclobutene ligands are relatively non-labile, and the binuclear species 239, although dicationic, failed to react with iodide ion. Cyclobutadiene is expected to be a better donor ligand than cyclobutenes, end so 238 should be even more stable than 239 and its cyclobutene analogues. If dissociation occurred, the resultant cation  $[Fe(CO)_{2}(n^{5}-C_{5}H_{5})]^{+}$ should react very rapidly with cyclobutadiene, giving an olefinic adduct, but this was not observed. Further, treatment of 237 with Ag in the presence of dinethylfumerate failed to give the expected Diels-Alder adduct if dissociated C, H, has been present. Thermolysis of 240 afforded 238, which was trapped by

### Scheme 30



adduct formation as shown in Scheme <u>30</u>. The formation of <u>239</u> can be accounted for by a sequence of metal-assisted cycloadditions as shown in figure <u>19</u>. These results support the view that transient  $C_{l_1}H_{l_1}$  complexes generated²⁹⁹ by oxidative degradation of  $Fe(CO)_3(n^4-C_{l_1}H_{l_1})$  are not involved in the formation of cyclobutadiene dienophile adducts. However, the possibility that  $n^{2-C}_{l_1}H_{l_2}$  species are involved cannot be discounted.

Treatment of two moles of  $Fe(CO)_3(n^4-C_4H_4)$  with one mole of dieneophilic acetylenes, RCOC=CCOR (R = Ph or Me) gave³⁰⁰ the tetracyclic product <u>241</u>.





(241)

References p. 168



From a valence force field calculation based on i.r. spectral studies, the vibrational force constants of the trimethylenemethane complex,  $Fe(CO)_3C(CH_2)_3$ , were obtained.³⁰¹

# DIENE METAL COMPLEXES

# Acyclic Mono-diene Compounds

A new method of synthesis of diene iron tricarbonyl complexes has been developed.³⁰² This involves treatment of  $Fe(CO)_5$  with the hydrocarbon in the presence of Me₃NO, when Fe(CO)₃(diene), Me₃N, CO and CO₂ are produced. It is

assumed that Me₃NO facilitates the rapid generation of  $Fe(CO)_{ij}$ , and the utility of the reactions lies in that it occurs at or below 0°, depending on solvent, and requires gentle refluxing to effect completion. This contrasts with the relatively high temperatures required to effect combination of  $Fe(CO)_5$  directly with dienes, or room temperature reaction of the insoluble  $Fe_2(CO)_9$  with hydrocarbons. It may be noted that this reaction is formally the reverse of that involving the cleavage of diene from  $Fe(CO)_3(diene)$  by Me₃NO in aprotic solvents.³⁰³

Molecular orbital calculations have been made³⁰⁴ of the bonding capability of Fe(CO)₃ with respect to conjugated dienes. Reaction of Fe(CO)₅ under UV light or of Fe₂(CO)₉ thermally, with C₄H_{6-n}Me_n afforded³⁰⁵ Fe(CO)₃(C₄H_{6-n}Me_n), and CO substitution by PF₃, giving Fe(CO)_{3-x}(PF₃)_x(C₄H_{6-n}Me_n) was achieved photochemically. The CO stretching force constants were altered in an additive way depending on the number and positions of the methyl groups on the butadiene group. The PF₃ ring seems to prefer the apical position in the square-based pyramidal species Fe(CO)₂(PF₃)(C₄H_{6-n}Me_n). Variable temperature n.m.r. studies of Fe(CO)_{3-x}(PF₃)_x(C₄H_{6-n}Me_n) have confirmed³⁰⁶ the apical site preference of PF₃, and when x=2 the second FF₃ group prefers a basal position zeros to the butadiene substituent in Fe(CO)(PF₃)₂(C₄H₆Me). The nature of the fluxional processes in these compounds is shown in fig. 20. Treatment of Fe(CO)(C₄H₆)₂ with Ph₂PCH₂CH₂PPh₂ (diphos) afforded³⁰⁷ Fe(CO)(diphos)(C₄H₆), as a 4:1 mixture of isomers. One of these isomers was identified spectroscopically as <u>242</u> while the other may be <u>243a</u> or <u>243b</u>. These compounds are fluxional, interconverting according to the scheme <u>243a</u> <u>243b</u>.



(242)

(243a)





Reaction of  $o-C_6H_4(CH_2Br)_2$  with  $Na_2Fe(CO)_4$  gave³⁰⁸ 244 (R = H) which, on acetylation, efforded 244 (R = COMe). Addition of AlCl₃ afforded 5-acetyl-2inianone, Treatment of 245 with AlCl₃ gave 246 which reacted with CO producing 247. Action of AlCl₃ on Fe(CO)₃(C₄H₆) afforded low yields of a mixture of 2- and 3- cyclopentanone, but the major product was unreacted starting material.



Me Fe (CO)₃ (245)

(244)





(247)

Fe(CO)₃

Scheme 31



(246)





(CC









Reaction of 2,3-dichlorobutadiene with iron carbonyls afforded³⁰⁹ a variety of products as depicted in Scheme <u>31</u>. The results suggested that the chlorine substituent on a carbon atom of a coordinated double bond of a  $\eta^2$ -diene, or on the terminal C atom of an  $\eta^4$ -diene, may be activated towards insertion of an Fe carbonyl group. A chlorine substituent at a central carbon atom of an  $\eta^4$ -diene appears to be unreactive in this respect. Reaction of perchloro(3,4-dimethylene-cyclobutene) with Fe(CO)₅ and Fe₂(CO)₉ occurred³¹⁰ according to Scheme <u>32</u>.

The acid-catalysed *cis-trans* isomerisation of certain diene iron tricarbonyl complexes occurred³¹¹ with an unusually large deuterium isotope effect. A





reasonable mechanism for a perticular compound is shown in Scheme <u>33</u>. It was noted that no dideuterated species were formed, even though relatively long reaction periods were involved. The stereospecificity of this process was

confirmed by the reactions outlined in Scheme 34. These results, coupled with the slow rate of exchange of *trans*-Fe(CO)₃(FhCH:CHCH:CHCH₂Fh), indicated that there was essentially stereospecific protonation/deprotonation of these diene complexes, and that in Scheme <u>33</u>, reaction (b) is faster than reaction (a).

Friedel-Crafts acylation (MeCOCl or PhCOCl) of 248 (R = H) gave³¹² anti-247 (R = Me or Ph) which, on treatment (R = Me) with  $\text{LiAlH}_{4}/\text{AlCl}_{3}$ , afforded a 1:1 mixture of the syn and anti-forms of 250. Similar treatment of 251 gave 252, while acylation of  $\text{Fe}(\text{CO})_{3}(1,3-C_{6}H_{8})$  afforded 253 which was reduced by  $\text{LiAlH}_{4}$  to 254.



(51.3 ± 1.5 % d1)

The photochemical reactions of  $Fe(CO)_3(C_4H_4R_2)$  (R = H or Me) with  $CF_3C\equiv CCF_3$ , and the thermal conversions of the products,³¹³ are shown in Scheme <u>35</u>. It may be noted that a regiospecific 1,3-hydrogen shift occurs in the thermal processes. The overall reaction involves a stepwise Diels-Alder addition of the butyne to a coordinated 1,3-diene, which is a thermally "allowed" concerted process in the absence of a transition metal. It is possible that the reaction of but-2-yne with butadiene catalysed³²⁴ by  $Fe(C_8H_8)_2$ , which gave 1,2-dimethylcyclohexadiene, occurs via a similar pathway.



(252)

(253)



OH

(251)

MeHC

References p. 168



Attempts to probe the nature of the bonding in n⁴-heterodiene iron tricarbonyl complexes have been made³¹⁵ via electric dipole moment studies. Among the compounds studied were  $Fe(CO)_3(trans-PhCH:COR)$  (R = H, Me or Ph),  $Fe(CO)_3(trans,trans-PhCH:CH:CHFh)$  and  $Fe(CO)_3(CH_2:CHCHO)$ . Vectorial analysis of the moments indicated that in all of the complexes the hydrocarbon ligands bond via  $\pi$ -electrons of the C=C and C=O bonds, and there is no involvement of the oxygen lone pair electrons. Metal-to-metal back-bonding is stronger in the heterodiene species than that in the butadiene complex. Kinetic studies have been made³¹⁶ of the reactions of Fe(CO)₃(PhCH:COR) (R = H, Me or Ph) with L (PFn₃, AsFn₃ and SbPh₃), and the results are summarised in Scheme <u>36</u>.

Scheme 36



It appears that in the first, associative, step the C=O group is displaced by L. <u>Acyclic Bis-diene Complexes</u>. Reduction of FeCl₃ in the presence of CO and dienes (butadiene, isoprene, 1,3-pentadiene) afforded³¹⁷ Fe(CO)(diene)₂, which is an effective catalyst for the polymerisation of butadiene. Treatment of



(256)



(255)



(257)

Fe( $C_8H_8$ )₂ with butadiene and CO, or reduction of FeCl₃ in the presence of  $C_8H_8$ ,  $C_4H_6$  and CO, gave³¹⁸ Fe(CO)( $n^4-C_4H_6$ )( $n^4-C_8H_8$ ), an effective catalyst for the dimerisation of  $C_4H_6$  to 4-vinylcyclohexene and cycloocta-1,5-diene. Photolysis of the arene complex 255 in the presence of 2,3-dimethylbutadiene afforded³¹⁹ the bis-diene complex 256. By electrolytic reduction of FeQ₃ (HQ =  $\beta$ -diketones, aromatic o-hydroxy- and o-amino-aldehydes or carboxylic acids, Schiff base ligands or polyamines) in polar organic solvents in the presence of unsaturated hydrocarbons, catalytically active organo-iron complexes could be prepared.³²⁰ From Fe(acac)₃, PPh₃ and  $C_4H_6$ , by electrolysis in methanol containing LiCl at -10°, the species Fe(PPh₃)( $n^4-C_4H_6$ )₂ was produced.

<u>Cyclic Polyolefin Complexes</u>. Dichloroacetylene reacted with  $Fe_2(CO)_9$  giving³²¹ the tetrachlorocyclopentadienone complex  $Fe(CO)_3(C_4Cl_4CO)$ . UV irradiation of  $Fe(CO)_3(diene)$  (diene = isoprene, *cis* or *trans*-pentadiene) with  $CF_3C_2CF_3$  gave³²² the known cyclopentadienone complex  $Fe(CO)_3(C_4(CF_3)_4CO)$ .³²³ However, when diene =  $C_4H_6$  or 2,3-dimethylbutadiene, the species <u>257</u>, analogous to those fluoroolefin adducts described earlier (ref. 279, Scheme 24, 25; page were formed. The o-styryldiphenylphosphine complex  $Fe(CO)_3(Ph_2PC_6H_4CH:CH_2)$  similarly gave <u>258</u>. However,  $M(CO)_3(C_6H_8)$  (M = Fe or Ru) reacted with hexa-fluorobutyne to give <u>259</u> (L = CO; R = H), and there was no evidence for intermediates similar to <u>257</u> or <u>258</u>; further treatment of <u>259</u> with  $P(CCH_2)_3CMe$  gave <u>259</u> (R = H; L =  $P(OCH_2)_3CMe$ ). The structure of the <u>259</u> (M = Ru; R = H; L = phosphite) has been determined crystallographically, and it was established that the cyclohexene ring remains nearly planar. Treatment of  $Ru(CO)_3(n^4-2-MeC_6H_7)$  with  $CF_3C_2CF_3$  gave <u>259</u> (M = Rh; R = Me; L = CO), indicating that the acetylene



prefers to attack at the unsubstituted double bond. Treatment of  $Fe(CO)_3^{-}$  $(n^4-C_7H_8)$   $(C_7H_8 = cycloheptatriene)$  with  $CF_3C_2CF_3$  gave <u>260</u> (L = CO) which subsequently reacted with  $P(OCH_2)_3$ CMe giving <u>260</u> (L = phosphite). The structure of this compound was also determined crystallographically and it was shown that addition of acetylene had taken place at the *endo* face of the original  $C_7$  ring generating two new five-membered rings and one three-membered ring. The iron coordination geometry is approximately trigonal bipyramidal.

By refluxing 4-vinylcyclohexene with  $Fe_2(CO)_9$  or  $Fe_3(CO)_{12}$ , a 3:1 mixture of 1- and 2-ethylcyclohexadiene complexes of iron tricarbonyl were obtained.³²⁴ Isomerisation of the 1-ethyl to the 2-ethyl species was achieved in concentrated  $H_2SO_4$ . The ¹H and ¹³C n.m.r. spectra of  $Fe(CO)_3(n^4-1-MeOC_6H_7)$  have been reinvestigated³²⁵ and a determination of ¹J_{CH} and the energy barrier for basalapical CO ligand exchange has been made. There was a discussion of the stability and lability of this complex in terms of electronic perturbations.

Treatment of  $Fe(CO)_3(n^4-C_6H_8)$  with MeCOCl/AlCl₃ in chlorinated hydrocarbons gave³²⁶ a mixture of  $Fe(CO)_3(n^4-MeCOC_6H_7)$  and  $[Fe(CO)_3(n^5-C_6H_7)]^+$ . Similar reactions with  $Fe(CO)_3(n^4-1-MeC_4H_5)$  and  $Fe(CO)_3(n^4-2,3-Me_2C_4H_4)$  gave  $Fe(CO)_3^-(n^4-1-Me-4-MeCOC_4H_4)$ ,  $[Fe(CO)_3(n^5-C_4H_7)]^+$  and  $Fe(CO)_3(n^4-anti-1-MeCO-2,3-Me_2C_4H_3)$ , respectively.

Reaction of  $Fe(CO)_3(n^4-cyclohexadienone)$  with  $p-RC_6H_1NH_2$  (R = H, NO₂, OMe) afforded³²⁷  $p-RC_6H_1NHPh$ , and  $1,4-(PhNH)_2C_6H_4$ . However, treatment of the cyclohexadienone complex with  $[Et_3O][BF_4]$  gave <u>261</u> which subsequently reacted with  $C_6H_{11}NH_2$  and  $Et_2NH$  giving N-phenylcyclohexylemine and phenyldiethylamine, respectively.

Treatment of the silacyclohexadiene <u>262</u> (R = Ph) with  $Fe(CO)_5$  caused³²⁸ isomerisation to <u>263</u>, while <u>262</u> (R = H) afforded <u>264</u>. Treatment of <u>265</u> (R = Me or Et) or its 2,5-isomer with  $Fe_2(CO)_9$  afforded³²⁹ <u>266</u>, and from this <u>265</u> could be liberated unchanged using  $Me_3NO$ .

The structure of tricyclo[6.4.0.0.^{2,7}]dodeca-3,5-dienetricarbonyl iron,³³⁰ <u>267</u>, has been determined crystallographically.³³¹ Under the influence of the fused cyclohexadiene ring, the  $C_{l_i}$  ring would tend to be planar while the cyclohexane ring would tend to have a chair conformation. The actual result is a





(261)

(262)





(264)







(265)







(268)

compromise, the  $C_{l_1}$  ring being folded by 15° along its diagonal axis, and the cyclohexane ring having a conformation intermediate between planarity and a chair. Treatment of Fe(CO)₃(n⁴-PhCH:CHCOMe) with acetylergosterol gave³³² <u>268</u> (R¹ = MeCO, R², R³ = H). Treatment of this with B₂H₆, followed by NaOH/H₂O₂, gave <u>268</u> (R¹ = MeCO, R² = H, R³ = OH), <u>268</u> (R¹ = MeCO, R² = OH, R³ = OH), <u>268</u> (R¹ = H, R² = OH, R³ = OH), <u>268</u> (R¹ = H, R² = OH, R³ = H). Treatment of <u>269</u>





(269)

(270)



(271)

Fe (CO)3

(272)





(OC)₃Fe



•

(274)

(275)

(273)

(OC)₃Fe N-N R COMe (276)

with  $Fe(CO)_5$  or  $Fe_2(CO)_9$  afforded³³³, as *exo*, *exo* and *exo*, *endo* products, <u>270</u> which, on addition of  $Ce^{\frac{1}{4}+}$ , gave <u>271</u>.

A vibrational spectral analysis has been made³³⁴ of the norbornadiene complex  $Fe(CO)_3(C_7H_8)$ . Treatment of the cycloheptatriene isomer with  $CH_2I_2$ gave³³⁵ <u>272</u> and none of the species bi(cyclohepta-2,4,6-trienyl)hexacarbonyldiiron reported elsewhere.³³⁶ Similar treatment of  $Fe(CO)_3(C_8H_8)$  afforded <u>273</u>. Addition of allyl halides to the anion  $[Fe(CO)_3(C_7H_7)]^-$  gave³³⁷ the C-C bound dimer  $[Fe(CO)_3(n^4-C_7H_7)]_2$  which has the endo configuration; alkyl halides afforded  $Fe(CO)_3(n^4-C_7H_8)$ . A suggested intermediate was the species  $Fe(CO)_3(n^3-C_7H_7)-(n^{1-C_3H_5})$ . Treatment of  $[M(CO)_3(n^7-C_7H_7)]^+$  with  $[Fe(CO)_3(n^4-C_7H_7)]_2$  likewise afforded C-C bonded dimers, viz.  $[M(CO)_3(n^6-C_7H_7)]_2$  with exo-configuration.

· 98

Reduction of the diazepine complexes 274 (R = COMe or CO₂Et) with boroaydride ion gave³³⁸ 275 which was further acylated in acetic anhydride giving 276. The three compounds so formed could also be obtained independently from the parent hydrocarbon and Fe₂(CO)₉.





Reaction of cyclooctatetraene complexes of tricarbonyl iron with tetracyanoethylene afforded³³⁹ several products, their ratio depending on solvent. These reactions are summarised in Scheme <u>37</u>. Although the reaction appears to te general, the site of initial attack by the electrophile is markedly influenced by electronic factors. Thus  $Fe(CO)_3(n^4-C_8H_4Me)$  afforded two complexes from attack at the  $\gamma$  (71%) and  $\delta$  (21.5%) ring C atoms (positions relative to the substituent). For  $Fe(CO)_3(n^4-C_8H_7Ph)$ , however, a (39%) attack was found to be competitive with  $\gamma$  (16%) and  $\delta$  (23%) addition. For  $Fe(CO)_3(n^4-C_8H_7CO_2Me)$ , the electrophile is directed to a (23%) and  $\beta$  (64%) sites preferentially. The inference drawn from the reaction with  $Fe(CO)_3(n^4-C_8H_7CO_2Me)$  is that binding to the  $\gamma$ -C atom is kinetically preferred, while in the benzocyclooctatetraene complex, the C atom adjacent to the site of benzo-fusion is attacked exclusively, as it is in protonation. It appears that the tautomer of  $Fe(CO)_3(c_8H_7Me)$ . 217 is kinetically the most reactive under the conditions applied, the zwitterions <u>218</u> and <u>279</u> being formed. Regioselectivity considerations suggest that 279 is



formed at a rate three times greater than that of <u>278</u> which will give the relative proportions of the products. The relative proportions of the products obtained from  $Fe(CO)_3(C_8H_7R)$  (R = Ph,  $CO_2Me$  or OMe) can be similarly explained (Scheme <u>38</u>). The formation of the Fe-C bond could either occur directly, or via



three-membered ring intermediate, as shown in Scheme 39. However, the greatest electron deficiency appears to be at the Y-C atom, suggesting that the zwitterion collapses directly to give the bicyclic product. Oxidation of the adducts with  $Ce^{l,+}$  afforded dihydrotetracyanotriquinacenes, as indicated in Scheme 37. In the reactions to give  $Fe(CO)_3(n^4-C_8H_7R)$  from  $Fe_2(CO)_9$  and the appropriate cyclooctatetraenes, the species with R = 0Me also afforded the tropone complex  $Fe(CO)_3$ - $\{\eta^{4}-C_{7}H_{8}(CO)\}\$  and <u>280</u>, which is structurally analogous to  $Fe_{2}(CO)_{6}(C_{8}H_{1O}), \underline{58}^{93}$ 

Reaction of  $Fe(CO)_3(C_8H_8)$  with  $Ph_3C^+$  gave³⁴⁰ the cation <u>281</u> which, on deprotonation with base, produced the fluxional Fe(CO)3(C8H7CPh3). Protonation of this trityl derivative gave, reversibly, 282, while thermolysis at 160° in



(280)





(281)



(283)

(282)

*vacuo* afforded the stereochemically non-rigid  $\frac{283}{283}$ . Oxidation of the last with Ce^{l++} afforded tritylcyclooctatetraene, C₈H₇CPh₃. These results confirm previous observations.³⁴¹

Treatment of Fe₂(CO)₉ with C₈H₇R (R = SiMe₃, GeMe₃, SnMe₃, SiMe₂(CH₂CH:CH₂) and Fe(CO)₂(n⁵-C₅H₅)) afforded³⁴² Fe(CO)₃(C₈H₇R) and Fe₂(CO)₆(C₈H₇R) (R = SiMe₃ or SnMe₃). It may be noted that the species Fe(CO)₂(n⁵-C₅H₅)(n¹-C₈H₇) was obtained by reaction of Fe(CO)₂(n⁵-C₅H₅)Cl with LiC₈H₇. Addition of trityl tetrafluoroborate to Fe(CO)₃(C₈H₇R) (R = SiMe₃ or GeMe₃) gave a salt which, on hydrolysis, afforded <u>284</u> (the structure of the species R = SiMe₃ has been confirmed crystallographically³⁴³). Reaction of Fe(CO)₃(C₈H₇Ph) with Ph₃C⁺, followed by hydrolysis, gave Fe(CO)₃(C₈H₆Ph(CPh₃)). The fluxional properties of the species Fe(CO)₃(C₈H₇R) and Fe(CO)₃(C₈H₇Ph) are different (fig. <u>21</u>). Protonation of Fe(CO)₃(C₈H₇Me) at low temperatures afforded two monocyclic





isomers which showed that electrophilic attack occurred at an internal C atom of the uncomplexed diene, in contrast to reactions of  $Ph_3C^+$  where attack occurs at the outer C atom of the free diene (see also ref. <u>340</u>).

Reaction of  $\operatorname{Ru}_3(\operatorname{CO})_{12}$  with 1,1-dimethyl-2,5-diphenyl-1-silacyclopentadiene gave³⁴⁴ <u>285</u>, the structure of which was determined crystallographically. Some substitution reactions³⁴⁵ of  $\operatorname{Ru}(\operatorname{CO})_3(n^4-1,5-c_8H_{12})$  are outlined in Scheme <u>40</u>. Reaction of cyclooctatetraene with  $\operatorname{Ru}_4(\operatorname{CO})_{12}H_4$  in refluxing heptane gave³⁴⁶ ruthenium carbonyl complexes of  $\operatorname{C}_8H_8$  and of cyclooctatrienes,  $\operatorname{Ru}_2(\operatorname{CO})_5(c_{16}H_{16})$  $\underline{61}^{96}$ ,  $c_{16}H_{16}$  and its ruthenium tri-carbonyl complex <u>286</u>. The dimer of  $\operatorname{C}_8H_8$  is very unusual and has not been detected previously. The dimer, and <u>286</u>, may be formed via  $\operatorname{Ru}(\operatorname{CO})_3(c_8H_8)$ , and indeed in a reaction between  $\operatorname{C}_8H_8$  and  $\operatorname{Ru}(\operatorname{CO})_3(c_8H_8)$ , <u>286</u> was produced. The uncoordinated 1,3-diene unit in  $\operatorname{Ru}(\operatorname{CO})_3(c_8H_8)$  is very







nearly planar³⁴⁷ and so, unlike free  $C_8H_8$ , can undergo (4+2)  $\pi$  cyclo-addition reactions. Whether Diels-Alder addition of  $C_8H_8$  to  $\operatorname{Ru}(\operatorname{CO})_3(C_8H_8)$  occurs directly at the coordinate olefin, or via preliminary coordination to the metal cannot be directly determined. However, in either event,  $\operatorname{Ru}(\operatorname{CO})_3(C_{16}H_{16})$  would not be produced directly, and subsequent steps would be necessary. Reaction of  $\operatorname{Fe}(\operatorname{CO})_3(C_8H_8)$  with  $C_8H_8$  yielded³⁴⁸ complexes of cyclooctatetraene dimers, but not analogous to <u>286</u>; the Fe analogue of this particular dimer can only be obtained by treatment of  $\operatorname{Fe}_2(\operatorname{CO})_0$  with the parent hydrocarbon.

Norbornadiene and cycloocta-1,5-diene complexes of ruthenium containing aminoacid groups have been reported.³⁴⁹ Treatment of  $[Ru(diene)Cl_2]_n$  (diene = norbornadiene or cycloocta-1,5-diene) with NaS₂FMe₂ gave³⁵⁰ Ru(diene)(S₂FMe₂)₂. The diene was readily replaced by various chelating di-phosphines and -arsines



Scheme 41 (continued) PrⁱMgBr, C₆H₈ PrⁱMgBr, C₇H₈ PrⁱMgBr, C₈H₈ E-



$$+ \operatorname{RuCl}_{3} \cdot 3 \operatorname{H}_{2} O \xrightarrow{Zn, EtOH} \operatorname{Ru}(\eta^{5} - \operatorname{C}_{5} \operatorname{H}_{5})_{2}$$

+ 
$$RuCl_3 \cdot 3H_2O$$
 Zn, EtOH

(L-L) giving cis-Ru(L-L)(S₂FMe₂)₂. Reaction of anhydrous RuCl₃ or [Ru(CO)₂Cl₂]_n with cycloocta-1,4-diene afforded³⁵¹ complexes of the 1,5-isomer, viz. [Ru(C₈H₁₂)Cl₂]_n and [Ru(CO)(C₈H₁₂)Cl₂]₂, respectively. Treatment of RuCl₃ with 2,3-dicyanobicyclo[2.2.2]octa-2,5,7-triene and its 1,4,5,6,7,8-hexamethyl derivative gave³⁵² the octahedral polymeric species [Ru(olefin)Cl₂]₂, in which Ru atoms are bound to all three double bonds, but each metal atom is attached to only two double bonds.

106

Reduction of  $[RuLCl_2]_n$  (L = benzene, 1,3-cycloheptadiene or 1,3,5-cycloheptatriene) or RuCl_3 with MgPrⁱBr or zinc dust in ethanol in the presence of certain cyclic oligoolefins gave³⁵³ RuL(olefin) as outlined in Scheme <u>41</u>. The ¹³C n.m.r. spectral studies of Ru( $\eta^5-C_7H_9$ )₂ revealed that it was fluxional.



#### DIENYL COMPLEXES

Mass spectral studies of  $Fe(n^{5}-C_{5}H_{5})(n^{5}-exo-RC_{6}H_{6})$  have shown³⁵⁴ that the main fragmentation routes involve stereoselective migration of the *endo* hydrogen atom of the cyclohexadienyl ring to the metal. Field desorption mass spectra have been obtained³⁵⁵ of  $[Fe(CO)_{3}(n^{5}-L)]^{+}$  (L =  $C_{6}H_{7}$ ,  $C_{7}H_{9}$ ,  $C_{10}H_{11}$ , 2-MeOC₆H₇) and  $[Fe(n^{5}-C_{5}H_{5})(n^{6}-L^{\cdot})]^{+}$  (L' = benzene, toluene, mesitylene). In all cases, molecular or quasi-molecular ions for the cations were present, usually as the base peaks in the spectra. Fragment ions corresponding to metal-ligand cleavages were also observed in most cases.

NMR, particularly ³¹P, spectral studies have been made³⁵⁶ of the series  $M(CO)_{x}L_{3-x}(diene)$  and  $[M(CO)_{x}L_{3-x}(\eta^{5}-dieny1)]^{+}$ , where M = Fe or Ru, L =  $P(OCH_{2})_{3}^{-}$  CEt, diene =  $C_{6}H_{8}$  or  $C_{7}H_{10}$ , x = 0, l or 2 and dieny1 =  $C_{5}H_{5}$ ,  $C_{6}H_{7}$ ,  $C_{7}H_{9}$ , x = 1 or 2. The fluxional properties of the diene and dieny1 species were interpreted as shown in figure 22. For the cycloheptadiene complexes another form of fluxionality, associated with the ring (figure 23) was observed. Rates for site exchange of the phosphite ligand in both diene and dieny1 cases were generally faster for the iron complexes, and the cycloheptadiene ring inversion process was faster than phosphite site exchange.

By refluxing  $[Fe(CO)_3(n^5-C_6H_7)]^+$  in methanol, three products, <u>287</u>, <u>288</u> and  $Fe(CO)_3(C_6H_8)$ , were formed, ³⁵⁷ depending on conditions. Thus after 20 min, the products were mainly <u>287</u> and a trace of <u>288</u>. After 90 min., the relative amount of <u>287</u> had decreased and <u>288</u> and  $Fe(CO)_3(C_6H_8)$  were present. After 23 days, the ratio <u>286:287</u> was 65:35 in methanol and no further changes were detected. It was noted that cleavage of the methoxyl group from <u>288</u>, giving



Figure 23



 $[Fe(CO_3(n^5-C_6H_7)]^+$ , occurred in HBF₄/propionic anhydride mixtures, and that <u>287</u> was converted to <u>288</u> when stirred at 20° in methanol containing a small emount of HBF₄. In a similar way, the endo derivatives  $Fe(CO)_3(n^4-C_7H_9R)$  (R = OEt or CH(CN)₂) were prepared from  $[Fe(CO)_3(n^5-C_7H_{10})]^+$ . However, it has not so far been proved possible to make *endo* derivatives of bicyclo[5.1.0]octadienyl complexes. It was found that methoxyl group transfer from the CO group in  $Ru(CO)_2(n^5-C_6H_7)(CO_2Me)$  gave specifically *endo*-Ru(CO)_3(n^4-C_6H_7OMe).

Treatment of  $[Fe(CO)_3(n^5-C_6H_6R)]^+$  (R = H, Me or OMe) with R'MgX, Cd(C₃H₅)₂ or ZnR¹₂ gave³⁵⁸ the diene complexes Fe(CO)₃(C₆H₆RR'), <u>289</u>. Reaction
of  $[Fe(CO)_{3}(n^{5}-C_{6}H_{7})]^{+}$  with Me₃MAr (M = Si or Sn, Ar = Ph, p-MeOC₆H₄, p-Me₂NC₆H₄, 2-furyl or 2-thienyl) gave³⁵⁹ Fe(CO)₃(n⁴-C₆H₇Ar), <u>289</u> (R = H, R' = Ar). Preliminary kinetic data have been obtained and indicated that the order of reactivity is Ph < p-MeOC₆H₄ < p-Me₂NC₆H₄, that reactions of 2-thienyl and 2-furyl silyl compounds were considerably faster than those reported earlier,³⁶⁰ and that the aryl tin compounds are more readily attacked than their silyl analogues. Preliminary studies showed that  $[Fe(CO)_{3}(n^{5}-C_{5}H_{7})]^{+}$  also behaved as an electrophile. Treatment of  $[Fe(CO)_{3}(n^{5}-C_{6}H_{7})]^{+}$  with P(OMe)₃ in methanol gave³⁶¹ <u>289</u> (R = H, R' = P(:0)(OMe)₂), and with hypophosphorous acid and NaHSO₃, the corresponding species with R' = PH(:0)(OH) and SO₃H were produced. Reaction of



(287)

(288)









(291)



(293)

the dienyl cation with NaHCO₃ or Na₂S afforded the dimers <u>290</u> (X = 0 or S). While treatment of the dienyl cation with  $BH_{4}$  afforded  $Fe(CO)_{3}(n^{4}-C_{6}H_{8})$ , reduction with Zn/Cu couple in THF or diisopropylamine in acetonitrile gave the C-C bound dimer <u>291</u>. The dienyl iron tricarbonyl cation derived from  $(-)-\alpha$ -phellandrene reacted similarly with P(OMe)₃ and NaHSO₃, giving <u>292</u> (R = P(:0)(OMe)₂ or SO₃H), but treatment with weak bases, e.g. NaHCO₃, Na₂S₂O₄, amines or enamines, gave only <u>291</u>. Addition of [Et₃NH][MCl₃] (M = Si, Ge or Sn) to [Fe(CO)₃(n⁵-C₆H₇)]⁺ gave³⁶² <u>289</u> (R' = MCl₃) in good yield.

Oxidation of  $Fe(n^5-C_5H_5)(n^5-C_6H_6R)$  (R = Et,  $CH_2Ph$  or  $C_5H_5$ ) by  $[Fh_3C][BF_4]$ or N-bromosuccinimide proceeded³⁶³ either by *exo*-R group abstraction or *endo*-H atom abstraction. Mixtures of  $[Fe(n^5-C_5H_5)(n^6-C_6H_6)]^+$  and  $[Fe(n^5-C_5H_5)(n^6-C_6H_5R]^+$ were formed in the reactions, and the tendency for R group abstractions increased along the series  $R = C_5H_5 < Et < CH_2Ph$ . When heated,  $Fe(n^5-C_5H_5)-(n^5-C_6H_7)$  afforded ferrocene.

Reaction of  $\operatorname{Ru}(\operatorname{CO})_4(\operatorname{MMe}_3)_2$  (M = Si or Ge) with  $\operatorname{C_5H_6}$ ,  $\operatorname{C_6H_8}$  or  $\operatorname{C_7H_{10}}$ afforded ³⁶⁴  $\operatorname{Ru}(\operatorname{CO})_2(n^5$ -dienyl)MMe₃. Yields of the cyclohexadienyl complex were low, the main product being the known  $\operatorname{Ru}(\operatorname{CO})_3(n^4-\operatorname{C_6H_8})$ .³⁶⁵ The mechanism of this reaction is thought to involve formation of  $\operatorname{Ru}(\operatorname{CO})_2(n^4$ -diene)(MMe₃)₂ which undergoes an intramolecular abstraction by Me₃ M of an H atom from the ring. Similar reactions involving  $[\operatorname{Ru}(\operatorname{CO})_4\operatorname{MMe}_3]_2$  also afforded  $\operatorname{Ru}(\operatorname{CO})_2(n^5$ -dienyl)-(MMe₃) together with  $\operatorname{Ru}(\operatorname{CO})(n^4$ -diene), by a reaction perhaps as outlined in Scheme <u>42</u>. Evidence to support this has been obtained from spectral studies of

Scheme 42

110





RU (CO)₂ (PPh₃)

(295)

reactions involving  $[Ru(CO)_{4}SiMe_{3}]_{2}$ . Treatment of  $Ru(CO)_{4}(MMe_{3})_{2}$  or  $[Ru(CO)_{4}GeMe_{3}]_{2}$  with indene gave low yields of  $Ru(CO)_{2}(n^{5}-C_{9}H_{7})(MMe_{3})$ . Reaction of  $Ru_{3}(CO)_{12}$  with  $C_{6}H_{8}$  or  $C_{7}H_{10}$  gave  $Ru(CO)_{3}(diene)$  complexes, but with  $C_{7}H_{10}$ ,  $Ru_{3}(CO)_{3}(n^{5}-C_{7}H_{9})(n^{7}-C_{7}H_{7})$  <u>130</u>,¹⁵⁵ and  $Ru_{4}(CO)_{12}(C_{7}H_{10})$ , <u>294</u> were also formed. The species  $Ru_{3}(CO)_{6}(n^{5}-C_{7}H_{9})(n^{7}-C_{7}H_{7})$ , together with  $Ru_{2}(CO)_{4}(n^{7}-C_{7}H_{7})(C_{7}H_{12})$  was also obtained by reacting  $Ru_{3}(CO)_{12}$  with cycloheptene. Comparison of <u>294</u> may be made with  $Ru_{4}(CO)_{11}(C_{8}H_{10})$ , whose structure is known.³⁶⁶ Hydride abstraction from  $Ru(CO)_{3}(C_{6}H_{8})$  and  $Ru(CO)_{3}(C_{7}H_{10})$  using  $Ph_{3}C^{+}$  afforded the expected dienyl cations, and some reactions of  $[Ru(CO)_{3}(C_{7}H_{9})]^{+}$  are shown in Scheme <u>43</u>. It is presumed that nucleophilic attack occurs at an *exo* position, as established³⁶⁷ in  $Ru(CO)_{3}(1,2,3,6-n^{4}-C_{8}H_{11}(5-CN))$ . Treatment of  $Ru(CO)_{3}^{-}(n^{4}-C_{7}H_{10})$  with PPh₃ gave  $Ru(CO)_{2}(PPh_{3})(C_{7}H_{10})$  whereas iodide abstraction from  $Ru(CO)_{2}(n^{5}-C_{7}H_{9})I$  using  $Ag^{+}$  in the presence of PPh₃ gave  $[Ru(CO)_{2}(PPh_{3})-$ 





# $(n^5-C_{H_Q})]^+$ which, on reduction with $BH_{L}^-$ afforded 295.

Reaction of  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{MMe}_{3})_{2}$  (M = Si or Ge) with  $\operatorname{C}_{7}\operatorname{H}_{8}$  gave³⁶⁸  $\operatorname{Ru}(\operatorname{CO})_{3}^{-}$ ( $\operatorname{n}^{5}-\operatorname{C}_{7}\operatorname{H}_{8}\operatorname{MMe}_{3}$ )(MMe₃), <u>296</u>, while  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{SiMe}_{3})_{2}$  afforded with  $\operatorname{C}_{7}\operatorname{H}_{7}\operatorname{C}_{6}\operatorname{F}_{5}$ , <u>297</u>, whose structure has been confirmed crystallographically.³⁶⁷ An equimolar mixture of  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{SiMe}_{3})_{2}$ ,  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{GeMe}_{3})_{2}$  and  $\operatorname{C}_{7}\operatorname{H}_{8}$  was heated and examined, using ¹³C n.m.r. spectroscopy, for "cross-over" products. The major species identified was <u>296</u> (M = Si <u>or</u> Ge), and minor amounts of  $\operatorname{Ru}(\operatorname{CO})_{2}(\operatorname{C}_{7}\operatorname{H}_{9})(\operatorname{MMe}_{3})$  (M = Si or Ge) together with very low amounts of  $\operatorname{Ru}(\operatorname{CO})_{2}(1-5-\operatorname{n}^{5}-\operatorname{C}_{7}\operatorname{H}_{8}(6-\operatorname{SiMe}_{3}))$ -(GeMe₃) were detected. This very low yield and the absence of other "cross-over" products suggested that  $\operatorname{MMe}_{3}$  migration occurs substantially by intra-molecular pathways. Iodination of <u>296</u> (M = Ge) gave <u>298</u> (M = Ge). In the reaction of [Ru(CO)_{4}\operatorname{MMe}_{3}]_{2} (M = Si or Ge) with C₇H₈, lower yields of <u>296</u> are obtained together with <u>299</u> and <u>300</u> (M = Si or Ge). The last is probably analogous to <u>68</u>.¹⁰²,¹⁰³ Treatment of [Ru(CO)_{4}\operatorname{SiMe}_{3}]_{2} with C₇H₇R (R = Me, Ph or



112





(296)

(297)





(299)



(300)





(302)

 $C_{6}F_{5}$ ) gave  $Ru_{2}(CO)_{5}(C_{7}H_{6}R)(SiMe_{3})$ , like <u>68</u> with the SiMe₃ group on the ring replaced by R, while  $C_{7}H_{7}R$  (R = CN or OBu^t) afforded  $Ru_{2}(CO)_{5}(C_{7}H_{7})(SiMe_{3})$ .

Reaction of tropone derivatives  $2-RC_7H_50$  (R = Me, Cl or Ph) with Fe₂(CO)₉ affordea³⁷⁰ Fe(CO)₃(2-RC₇H₅0). Protonation of this in concentrated H₂SO₄ gave <u>301</u>, probably via the intermediate <u>302</u>. Substantial backing for this pathway was obtained by studying the reactions of Fe(CO)₃(2-ClC₇H₅0) in FSO₃H, followed by treatment with OMe⁻, Scheme <u>hh</u>. Isolation of both methoxylated diene complexes indicates that a relatively high proportion of <u>302</u> must be formed and supports the view that the initial protonation occurs at an uncoordinated double bond in the starting material. This is then followed by

Scheme 44



a rapid 1,2-shift of the  $Fe(CO)_3$  group and the overall reaction scheme seems to disprove recent suggestions³⁷¹ that the formation of <u>301</u> occurs via preferential attack of  $H^+$  at a terminal C atom of the diene  $Fe(CO)_3$  group in  $Fe(CO)_3(C_7H_5O)$ . It was observed that the rate of isomerisation of <u>302</u> to <u>301</u> was higher than that of the parent tropone species, Scheme 45.



From a study of the attack by OMe⁻ on  $[Fe(CO)_3(2-ClC_7H_6O)]^+$  it would appear that exc addition occurs and it was deduced that in FSO₃H at -78°, stereoselective protonation occurs from the *endo* rather than the *exc* side of the uncoordinated double bond. When  $[Fe(CO)_3(2-RC_7H_6O)]^+$ , <u>301</u>, was quenched with Na₂CO₃/MeOH, the species <u>304</u> was formed in high yields. Protonation of  $Fe(CO)_2(PPh_3)(C_7H_5O)$ 



in  $D_2SO_{\frac{1}{2}}$  gave <u>305</u> which, unlike Fe(CO)₃( $C_7H_5O$ ), underwent no further D⁺ uptake, possibly due to steric hindrance associated with PPh₃. Addition of NaOMe to <u>305</u> gave <u>306</u>.

Treatment of  $Fe(CO)_3(C_8H_{12})$  ( $C_8H_{12} = 1,3$  or 1,5-cyclooctadiene) with  $Ph_3C^+$ gave ³⁷² <u>307</u> and <u>308</u> whose reactions with nucleophiles are summarised in Scheme <u>46</u>. Addition of  $Ph_3C^+$  to  $Ru(C_7H_8)(C_8H_{12})$  afforded ³⁷³ [ $Ru(\eta^7-C_7H_7)-(C_8E_{12})$ ]⁺ <u>309</u>; and treatment of this with certain nucleophiles ( $R^- = Me$  or CN) gave <u>310</u>. Protonation of <u>311</u> afforded <u>312</u>, also produced by hydride abstraction from  $Ru(\eta^5-C_7H_9)_2$ . Treatment of <u>312</u> with 1,8-bis(dimethylamino)naphthalene afforded the adduct <u>313</u> (mode of attachment of the napththalene unspecified). Borchydride reduction of <u>311</u> caused regeneration of  $Ru(\eta^5-C_7H_9)_2$ , while  $CN^$ attack gave  $Ru(\eta^5-C_7H_9)(\eta^5-C_7H_8CN)$ ; treatment of the last with more  $Ph_3C^+$ followed by  $CN^-$  ultimately produced  $Ru(\eta^5-C_7H_8CN)_2$ . Reaction of <u>311</u> with other nucleophiles ( $R = Me^-$ ,  $OMe^-$ ,  $NMe_2^-$ ,  $NEt_2^-$ ,  $CH(CO_2Et)_2^-$ ) gave  $Ru(\eta^5-C_7H_9)(\eta^5-C_7H_8R)$ in which the substituent occupies an *exo* position.

#### CYCLOPENTADIENYL COMPOUNDS

<u>Binuclear carbonyl complexes</u>. Thermal decomposition of  $[Fe(CO)_2(n^5-C_5H_5)]_2$ above 165° gave³⁷⁴  $Fe_1(CO)_1(n^5-C_5H_5)_1$  which, above 210°, afforded ferrocene. The reactions of various iron and ruthenium carbonyl compounds with AlR₃ (R = ally1) have been discussed.³⁷⁵ The species  $[Fe(CO)_2(n^5-C_5H_5)]_2(AlR_3)_n$  (n = 1 or 2),  $[Ru(CO)_2(n^5-C_5H_5)]_2(AlR_3)$  and  $[Fe(CO)(n^5-C_5H_5)(AlR_3)]_1$  have been described and in all, the Al atom is bound to bridging CO groups. Treatment of  $[Fe_3(CO)_{11}H]^-$  with MeOSO₂F gave  $Fe_3(CO)_{11}(COMe)H_{,109}$  (see ref. 143) and the effect of ion pairing on the reactivity of M[Fe(CO)_4R] (R = ally1), particularly alkyl migrations, e.g. M[Fe(CO)_1R] + L  $\rightarrow$  M[Fe(CO)_2L(COR)], was reviewed. It was



(309)



(310)







noted that the reactivity is enhanced by ion-pairing and decreases in the order  $Li^+ > Na^+ >> (Ph_3P)_p N^+$ .

The stereochemistry of compounds of the type  $Fe(CO)_2(n^5-C_5H_5)Y$  (Y is a univalent group which can form bridges to Fe atoms) approximates closely to a regular octahedron.³⁷⁶ In assuming that this goemetry is present in a wide range of structures and indicates a certain rigidity in this arrangement, it was shown that the tautomeric interconversions of  $[Fe(CO)_2(n^5-C_5H_5)]_2$  must involve simultaneous making or breaking of two CO bridge systems. This mechanism has been suggested previously³⁷⁷ but a geometrical explanation of this kind has not been advanced before.

The reactions of  $Fe_2(CO)_9$  with pentafulvenes  $C_6H_4R_2$  (R = Me, Et or Ph)³⁷⁸ are summarised in Scheme <u>47</u>. The structures of <u>314</u> and <u>315</u>, which are related to <u>316</u>, have been determined crystallographically, and that of <u>315</u> (Fe-Fe 2.77Å) may be compared with that of <u>317</u> (Fe-Fe 2.74Å).³⁷⁹ Similar reactions with  $Ru_3(CO)_{12}^{380}$  are outlined in Scheme <u>48</u>, and the structure of <u>318</u> (Ru-Ru 2.85Å)

115



is similar to that of <u>315</u>. The structure of <u>319</u>, prepared³⁸¹ from <u>320</u> and  $\operatorname{Fe}_2(\overset{(CO)}{\circ}_9$ , has been determined³⁸² crystallographically. The Fe- $\sigma$ -acyl distance (1.96A) is significantly shorter (ca. 0.14A) than accepted Fe-C(sp³) distances in other Fe(CO)₂( $\pi^5-C_5H_5$ )R compounds, and is comparable with the Fe-C(acyl) distance (1.97A) in Fe(CO)₂[HB(pyz)₃](COMe).³⁸³ This short distance is consistent with the representation of the bonds as in fig. <u>24</u>





## Figure 24





Scheme 48



It has been observed³⁹⁴ that in the acenaphthalene complex <u>321</u> there is localised scrambling of the CO ligands in the Fe(CO)₃ group, that there is no exchange in the Fe(CO)₂ group, and that there is no CO ligand exchange between the two iron atoms. The Fe-Fe distance (2.77Å) is quite long, and this may be a factor in the lack of inter-metal CO exchange. Within the Fe(CO)₃ group, there may be a pairwise permutation, abb'  $\rightleftharpoons$  bab' and abb'  $\rightleftharpoons$  b'ba (see fig. <u>25</u>). A similar situation obtains on the cycloheptatriene complex Fe₂(CO)₆(C₇H₈), where the Fe-Fe distance is even longer (2.87Å) than that in <u>321</u>.

The structures of  $FeCo(CO)_6(n^5-C_5H_5)$ , <u>322</u> and  $FeCo(CO)_4(C_7H_8)(n^5-C_5H_5)$ <u>323</u> ( $C_7H_8$  = norbornadiene) have been determined crystallographically.³⁸⁵, 386 In the former the Fe-Co distance and the  $Fe(\mu-CO)_2Co$  bond angle is 2.55Å and 144°, while in the latter they are 2.52Å and 161°, respectively.

Reduction of  $[Fe(CO)_2(n^5-C_5H_5)]_2$  with Ne/K_{2.8} alloy afforded³⁸⁷  $[Fe(CO)_2-(n^5-C_5H_5)]^-$  which reacted with  $[Bu_{l_1}^{n_1}N][ClO_{l_2}]$  and SnPh₃Cl giving  $[Bu_{l_1}^{n_1}N][Fe(CO)_2-(n^5-C_5H_5)]^-$ 





(320)







 $(\eta^5-C_5H_5)]$  (as crystals) and Fe(CO)₂ $(\eta^5-C_5H_5)SnPh_3$ , respectively.

The crystal structure of  $Fe_2(CO)_3(CNCH_2CHMe_2)(n^{5}-C_5H_5)_2$  has been determined;³⁸⁸ The Fe-Fe distance is 2.52Å, the rings are mutually *cis*, the isocyanide ligand is terminal and the  $Fe(\mu-CO)_2Fe$  group non-planar. Reaction of  $[Fe(CO)_2(n^{5}-C_5H_5)]_2$  with MeNC afforded³⁸⁹  $Fe_2(CO)_{4-n}(CNMe)_n(n^{5}-C_5H_5)_2$  (n = 1, 2 or 3), for which mass spectra were obtained; no evidence could be found for  $[Fe(CNMe)_2(n^{5}-C_5H_5)]_2$ . Variable temperature ¹³C n.m.r. spectral studies³⁹⁰ of  $Fe_2(CO)_3(CNR)(n^{5}-C_5H_5)_2$  have revealed that while the species with R = Bu^t has terminal isonitrile and is fluxional (Scheme <u>49</u>), the species containing CNPh has bridging isonitrile and is stereochemically rigid. Reaction of  $Fe_2(CO)_{4-n}^{-}(CNR)_n(n^{5}-C_5H_5)_2(n = 1 \text{ or } 2)$  with HX afforded³⁹¹ the species  $[Fe_2(CO)_2(\mu-CO)-(\mu-CNHR)(n^{5}-C_5H_5)_2]^{+}$  and  $[Fe_2(CO)_2(\mu-CNHR)_2(n^{5}-C_5H_5)_2]^{+}$  when R = Me, Et or CH₂Ph, but not Bu^t. Similar reactions with R'X (X = Br or I) gave  $[Fe_2(CO)_2(\mu-CO)-(CNRR')(n^{5}-C_5H_5)_2]^{+}$  and  $[Fe_2(CO)(CNR)(\mu-CO)(\mu-CNRR')(n^{5}-C_5H_5)_2]^{+}(R,R' = Me, Et, CH_2Ph or n-alkyl but not Bu^t). It was noted that <math>[Fe(CO)(CNMe)(n^{5}-C_5H_5)]_2$  was more readily alkylated than  $Fe_2(CO)_3(CNMe)(n^{5}-C_5H_5)_2$ .



<u>Hydrido Species</u>. The thermolysis and photolysis of  $Fe(CO)_3(C_5H_6)$ , giving  $[Fe(CO)_2(n^5-C_5H_5)]_2$ , has been extensively studied.³⁹² The thermolytic process was explained by the mechanism outlined in Scheme <u>50</u>. The pathway (i) is consistent with, and based on, previous work with PPh₃ (Scheme <u>51</u>). The photolytic process was investigated using the 5-exo-deuteriated species  $Fe(CO)_3(C_5H_5D)$ , obtained by treatment of  $[Fe(CO)_3(n^5-C_5H_5)]^+$  with  $[BD_3(CN)]^-$ . The nechanism is depicted in Scheme <u>52</u>.



(324)









Protonation of  $Fe_2(CO)_3 \{P(OMe)_3\} \{n^5-C_5H_5\}_2$  in acetic acid/sulphuric acid (98%) mixtures gave³⁹³ [{ $Fe_2(CO)_3 \{P(OMe)_3\} \{n^5-C_5H_5\}_2\}_2 H$ ]⁺, <u>324</u>, which was isolated as the BPh₄ salt. The pK_b values for [ $Fe(CO)_2 (n^5-C_5H_5)$ ]₂ and its mono-phosphite analogue were 7.5 ± 0.3 and 5.9 ± 0.3, respectively.

Treatment of  $\operatorname{Ru}_3(CO)_{12}$  or  $\operatorname{Ru}_4(CO)_{12}H_4$  with cyclopentadiene, in the absence of oxygen, afforded 394 Ru(CO)₂( $\eta^5-C_5H_5$ )H which, in the presence of air, readily oxidised in high yield to  $[Ru(CO)_2(n^5-C_5H_5)]_2$ . Treatment of the hydride with  $PPh_3$  in boiling chloroform gave first  $Ru(CO)(PPh_3)(\eta^5-C_5H_5)H$  and then its chloroderivative  $Ru(CO)(PPh_3)(n^5-C_5H_5)Cl$ . Treatment of the phosphine hydride with CO under high pressure in the presence of  $Et_0.BF_3$  gave  $[Ru(CO)_2(PPh_3)(\eta^5-C_5H_5)]$ -[BF4]. When Ru4(CO)12D4 reacted with cyclopentadiene in the presence of PPh3, only the hydride  $Ru(CO)(PFh_3)(\eta^5-C_5H_5)H$  was formed; careful spectroscopic studies revealed that  $Ru(CO)_{3}(C_{5}H_{6})$  is an intermediate in these reactions and is the source of the hydride ligand. When Ru3(CO) 12 was heated with cyclopentadiene in hexane,  $Ru(CO)_3(C_5H_6)$  and  $Ru_3(CO)_9(n^3-C_5H_5)H$ , 325 were formed. The former reacted with  $Ph_3C^+$  and  $PPh_3$  giving, respectively  $[Ru(CO)_3(n^5-C_5H_5)]^+$  and  $\operatorname{Ru}(\operatorname{CO})_{3}(\operatorname{PPh}_{3})_{2}$ . The latter is analogous to  $\operatorname{Ru}_{3}(\operatorname{CO})_{9}(n^{3}-c_{12}H_{15})H$  and  $\operatorname{Ru}_{3}(\operatorname{CO})_{9}-c_{12}H_{15}$ (n³-C₅H₇)H.³⁹⁵ Treatment of Ru₃(CO)₁₂ with penta-1,3-diene gave <u>326</u>. While  $Os_3(CO)_{12}$  reacted with cyclopentadiene giving  $Os(CO)_3(C_5H_6)$  and traces of  $Os(CO)_2(n^5-C_5H_5)H$ , there was no reaction at all with  $Os_4(CO)_{12}H_4$ . However,  $Os_3(CO)_{10}H_2$  or  $Os(CO)_4H_2$  reacted with  $C_5H_6$  giving  $Os(CO)_3(C_5H_6)$  and the cyclopentadienyl hydride in modest yields. The diene tricarbonyl was thermally unstable, regenerating Os₃(CO)₁₂ and giving dicyclopentadiene; after a 20-day

Scheme 50

(i)  $\begin{array}{c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$ 

$$C_{5}H_{6} + Fe(CO)_{2}(n^{5}-C_{5}H_{5})H \longrightarrow Fe(CO)_{2} \xrightarrow{Fe(CO)_{2}(n^{5}-C_{5}H_{5})H} [Fe(CO)_{2}(n^{5}-C_{5}H_{5})]_{2} +$$

C₅H₈ (detected by ¹H n.m.r. spectroscopy)

 $Fe(CO)_{4} + CO \longrightarrow Fe(CO)_{5}$ 

Scheme 50 (continued)

(iii)

122

$$Fe(CO)_{3}(C_{5}H_{6}) + Fe(CO)_{4} \longrightarrow Fe(CO)_{2}(n^{5}-C_{5}H_{5})H + Fe(CO)_{5}$$

$$2[Fe(CO)_{2}(n^{5}-C_{5}H_{5})] \xrightarrow{} [Fe(CO)_{2}(n^{5}-C_{5}H_{5})]_{2}$$

(iv)

$$\operatorname{Fe}^{\prime}(\operatorname{CO})_{3}(\operatorname{C}_{5}\operatorname{H}_{6}) + [\operatorname{Fe}^{\prime\prime}(\operatorname{CO})_{2}(\operatorname{n}^{5}-\operatorname{C}_{5}\operatorname{H}_{5})]^{\bullet} \rightarrow [\operatorname{Fe}^{\prime}(\operatorname{CO})_{2}(\operatorname{n}^{5}-\operatorname{C}_{5}\operatorname{H}_{5})]^{\circ} +$$

 $Fe''(CO)_2(n^5-C_5H_5)H + CO$ 



Scheme 52



reflux, some  $Os(CO)_2(n^5-C_5H_5)H$  was found. The reaction with  $Os_3(CO)_{10}H_2$  also afforded  $Os_3(CO)_{12}$ ,  $Os_4(CO)_{12}H_2$  and  $Os_3(CO)_9(n^2-C_5H_4)H_2$ , <u>327</u>, (low yield) which is analogous to  $Os_3(CO)_9(n^2-C_8H_{12})H_2$ .³⁹⁶

<u>Isocyanide and Carbone Species</u>. Reaction of  $[Fe(CO)_3(n^5-C_5H_5)]^+$  with NH₂Me gave  $Fe(CO)_2(n^5-C_5H_5)(CONHMe)$  which, on treatment with  $COCl_2/NEt_3$ , afforded³⁹⁷  $[Fe(CO)_2(CNMe)(n^5-C_5H_5)]Cl$ . The carbone complex  $[Fe(CO)\{CMe(OMe)\}(PPh_3)-(n^5-C_5H_5)][PF_6]$  was obtained³⁹⁸ by alkylation of the appropriate acyl complex with MeOSO₂F followed by metathetical anion exchange with  $PF_6$ .

Olefin, allene and related Complexes. The barriers to rotation about the olefinmetal bond of olefins in  $[Fe(CO)_2(olefin)(n^5-C_5H_5)]^+$ ,  $[Fe(CO)_2(olefin)(n^5-C_9H_7)]^+$ and  $[Ru(CO)_2(olefin)(n^5-C_5H_5)]^+$  (olefin =  $C_2H_4$ ,  $C_3H_6$ ,  $1-C_4H_8$ ,  $i-C_4H_8$ , cis- and trans-2- $C_4H_8$ ) were found³⁹⁹ to be *ca*.8 kcal/mol. There was no observable dissociation about the C=C bond. The thermodynamically preferred orientations of the olefins in these complexes were determined using chemical shift differences resulting from substitution of an indenyl group for a  $C_5H_5$  ligand. The preferred metal- $C_2H_4$  orientation is parallel to the  $C_5H_5$ -ring plane whereas methyl group substitution on the alkene induces a deviation from this preferred 'orientation', the dihedral angle in the  $C_3H_6$  complex being estimated to be *ca*. 10°. The indenyl complexes, which are new, were obtained by hydride abstraction from Fe(CO)₂- $(n^5-C_9H_7)Et$  or by protonation of Fe(CO)₂ $(n^5-C_9H_7)R$  (R =  $CH_2CH:CH_2$  or  $CH_2CH:CH_2$ ).

Treatment of  $[Fe(CO)_2(C_2H_4)(n^5-C_5H_5)]^+$  with a series of nucleophiles Q (pyridine, Me₃N, or PPh₃) afforded⁴⁰⁰  $[Fe(CO)_2(n^5-C_5H_5)(CH_2CH_2Q)]^+$ . With NH₃, the binuclear species  $[\{Fe(CO)_2(n^5-C_5H_5)CH_2CH_2\}NH_2]^+$  was formed. Reaction of the ethylene cation with NaCN in water resulted in alkene displacement, but with  $[Et_4N][CN]$  in acetonitrile,  $Fe(CO)_2(n^5-C_5H_5)(CH_2CH_2CN)$  was produced in modest yield. Similar treatment of  $[Fe\{P(OPh)_3\}_2(C_2H_4)(n^5-C_5H_5)]^+$  gave good yields of  $Fe\{P(OPh)_3\}_2(n^5-C_5H_5)(CH_2CH_2CN)$ . Reaction of  $[Fe(CO)_2(C_2H_4)(n^5-C_5H_5)]^+$  with  $[Mo(CO)_3(n^5-C_5H_5)CH_2CH_2CN)$ . Reaction of  $[Fe(CO)_2(C_2H_4)(n^5-C_5H_5)]^+$  with  $[Mo(CO)_3(n^5-C_5H_5)CH_2CH_2O]^-$  afforded  $(n^5-C_5H_5)(CO)_2FeCH_2CH_2OCH_2CH_2Mo(CO)_3^-(n^5-C_5H_5).$ 

One double bond in norbornadiene can be protected⁴⁰¹ by its coordination to  $[Fe(CO)_2(n^5-C_5H_5)]^+$ , thereby rendering it unreactive towards reagents which normally attack it (Scheme 53). Hydrogenation of related complexes  $[Fe(CO)_2(n^2-diene)(n^5-C_5H_5)]^+$  and a alkene-alkyne derivative using palladised charcoal is shown in Scheme 54, and an example of electrophilic aromatic substution is normally much shlower than electrophilic addition to C=C bonds) is outlined in Scheme 55.

Methylvinylketone epoxide reacted⁴⁰² with  $[Fe(CO)_2(n^5-C_5H_5)]^-$  giving <u>328</u> which, on treatment with the Li⁺ salt of the enolate of cyclohexanone, or the corresponding silyl ether, or cyclohexanone enamine, afforded <u>329</u>. By refluxing this compound in dichloromethane in the presence of basic alumine, the iron-



Scheme 54







 $fe \equiv CpFe(CO)_2^+$ 

Scheme 55



fe≡CpFe(CO)₂+

carbonyl fragment was removed and <u>330</u> released. Other cyclic ketones, as their enol derivatives or enamines, behaved similarly.

Exchange of the olefin in  $[Fe(CO)_2(CH_2CMe_2)(n^5-C_5H_5)]^+$  was effected⁴⁰³ using acenapththalene, giving <u>331</u>. Treatment of this salt with NaOMe, PPh₃ and NaI caused displacement of acenapththalene, and formation of  $[Fe(CO)_2^-(n^5-C_5H_5)]_2$ ,  $[Fe(CO)_2(PFh_3)(n^5-C_5H_5)]^+$  and  $Fe(CO)_2(n^5-C_5H_5)I$ , respectively. However, treatment of <u>331</u> with NaSBu^t or isobutyraldehyde pyrrolidine enamine afforded <u>332</u> (nucleophile = Q), and the preferred *anti* attack of Q can be understood in terms of approach by the nucleophile to the least sterically hindered face of the coordinated olefin. Cleavage of the Fe-C bond in <u>332</u>, with the release of the appropriate hydrocarbon, was achieved using  $Br_2$ ,  $Cu^{2+}$  in alcohols and HgCl₂.

General syntheses of monosubstituted  $\eta^2$ -olefin and mono-substituted  $\eta^1$ -allyl complexes of Fe(CO)₂( $\eta^5$ -C₅H₅) have been described⁴⁰⁴ and these are related to other known routes.⁴⁰⁵ These are outlined in Scheme <u>56</u>, which deals with sulphonylation, alkylation, acylation, carboxylation, bromination and brominolysis. The general reactions⁴⁰⁶ are shown first and specific reaction pathways related to these for each group of reactions.

A series of olefin exchange reactions were accomplished using  $[Fe(CO)_2 - (CH_2:CMe_2)(n^5-C_5H_5)]^+$  initially to give  $[Fe(CO)_2(CH_2:CHCH_2E)(n^5-C_5H_5)]^+$  (E = OMe, OH, Ph or Ph₃P⁺) in 1,2-dichloroethylene. The isobutylene could also be exchanged for cycloalkenes, cyclohexa-1,3- and 1,4-dienes, cycloocta-1,5-diene and norbornediene. Many of these reactions have been described earlier.⁴⁰⁷ In attempts to make an olefin complex with  $CH_2:CHCH_2CN$ , the species  $[Fe(CO)_2 - (Fe(CO)_2 - (Fe(CO)_2)_2 - (Fe(CO)_2 - (Fe(CO)_2)_2 - ($ 

Fe(CO)₂⁺

(328)





(330)







<u>Sulphonylation</u>. (pathway A), intermediate trapped by  $Me_{3}O^{+}BF_{h}^{-}$ 





Alkylation

(i) 
$$[Fe] + Me_{3}O^{+}BF_{4}^{-} \rightarrow [Fe]^{+}$$
  $Me \xrightarrow{Et_{3}N} \underline{C} + \underline{D}$   $(E = Me)$   
(ii)  $[Fe] + c_{7}E_{7}^{+}BF_{4}^{-} \rightarrow [Fe]^{+}$   $Me \xrightarrow{Et_{3}N} \underline{C} + \underline{D}$   $TCNE$   
 $[Fe] \xrightarrow{C} (CN)_{2}$   $(\underline{B})$   
(iii)  $[Fe] + c_{1} \xrightarrow{C1} c_{1}$   $C1 \xrightarrow{C1} C1 \xrightarrow{Et_{3}N} [Fe]$ 

<u>Acylation</u> (RCOC1 + AgSbF₆)  $[F_{e}] \xrightarrow{E^{+}} [F_{e}]^{+} \xrightarrow{E^{+}} E \xrightarrow{Et_{3}N} C \text{ only}$  $E^{+} = FhCO \text{ or MeCO}$ 

## Scheme 56 (continued)

Dialkoxycarbenium ions can be generated via orthoformates or 1,3-dioxolones in the presence of  $Fh_3C^+$ , giving





Carboxylation





 $(n^{1}-NCCH_{2}CH:CH_{2})(n^{5}-C_{5}H_{5})]^{+}$  was obtained. Deprotonation of  $[Fe(CO)_{2}(n^{2}-CH_{2}:-CHCH_{2}OMe)(n^{5}-C_{5}H_{5})]^{+}$  occurred by pathway D (Scheme <u>56</u>) only, and the product was unaffected by 3% aqueous HCL. From ¹H and ¹³C n.m.r. spectral studies, it was deduced that the preferred conformation of the olefin cations is as shown in figure <u>25</u>, The stereochemistry of the  $n^{1}$ -allyl complexes derived by deprotonation of the olefin cations could be accounted for in terms of preferred base abstraction of an allylic proton *trans* to the Fe-olefin bond. However, deprotonation of

### Figure 25



 $[Fe(CO)_2(n^2:CH_2CHCH_2OH)(n^5-C_5H_5)]^+$  afforded a cyclised product <u>333</u> in a conformationally determined stereospecific intramolecular reaction. Deuteration of  $Fe(CO)_2(n^5-C_5H_5)(CH_2CH:CHPh)$  occurred non-stereospecifically.

Reactions of coordinated propargyl and allene complexes of  $Fe(CO)_2(\eta^5-C_5H_5)$  have been reviewed.⁴⁰⁸ Thus, protonation of  $Fe(CO)_2(\eta^5-C_5H_5)CH_2CECR$  (R = Me, Ph or  $Fe(CO)_2(\eta^5-C_5H_5)$ ) with  $HBF_{1/2}$  accetic anhydride afforded [ $Fe(CO)_2(\eta^2-CH_2=C=CHR)-(\eta^5-C_5H_5)$ ][ $BF_{1/2}$ ]. These cations react with nucleophiles (Q) in the following ways:

- (a) with BH₁, NHEt₂ or PPh₃, addition occurs at C(1) of the allene, giving <u>334</u>;
- (b) with OMe, addition occurs at C(2) giving 335 and ultimately 336;
- (c) with OEt, addition occurs at a CO group, giving the reaction as shown in Scheme <u>57</u>;
- (d) with NEt₃, deprotonation can occur causing regeneration of the parent propargyl complex; and
- (e) with LiMe, non-selective reactions give a mixture of products.





Of these, the most common is (a) and together with the initial protonation of the propargyl complex, stimulates the two-step (3 + 2) cycloaddition reactions between electrophiles and the FeCH2CECR group. The structure of [Fe(CO)2- $(\eta^2 - Me_2C:C:CMe_2)(\eta^5 - C_5H_5)]^+$ , 337, has been determined⁴⁰⁹ crystallographically. The C(3)-C(4)-C(5) angle (146°) is one of the smallest angles observed for allene species other than d¹⁰ metal complexes, and there is considerable asymmetry in the Fe-C distances (Fe-C(3) 2124A, Fe-C(4) 2.06A; C(3)-C(4) 1.37A and C(4)-C(5) 1.34A).

Reaction of Na[Fe(CO)₂( $\eta^5-C_5H_5$ )] with 1-methyl-2,3-bis(t-butyl) cyclopropenium ion gave⁴¹⁰ [Fe(CO)₂( $\eta^5-C_5H_5$ )]₂ and ( $C_3Bu_2^{t}Me$ )₂ quantitatively. However, with 1,2,3-tris(t-buty1)cyclopropenium ion, only a small amount of the carbonyl



dimer was produced, the main product being 338. It was thought that this species was formed by prior electrophilic attack by  $[C_3Bu_3^{\dagger}]^{\dagger}$  on a coordinated CO group, fig. 26, which then underwent ring expansion to give the oxocyclobutenyl ligand. Reaction of Na[Fe(CO)₂( $\eta^{5}$ -C₅H₅)] with (CF₃)₂C:C:C(CF₃)₂ gave⁴¹¹ <u>339</u>.

<u>Species containing M-C  $\sigma$ -Bonds</u>. The species  $[Fe(CO)_2(\eta^5-C_2H_2)]^-$  is regarded⁴¹² as one of the most nucleophilic of the carbonylate anions, and reacts with  $M_0(CO)_3(n^5-C_5H_5)(CH_2CH_2CH_2Br)^{413}$  and  $M_1(CO)_5SnPh_3^{414}$  causing displacement of the



(340)





Mo and Mn atoms, giving  $(n^5-C_5H_5)(CO)_2FeCH_2CH_2CH_2Fe(CO)_2(n^5-C_5H_5)$  (A) and  $Fe(CO)_2(n^5-C_5H_5)(SnFh_3)$ , respectively. However,  $[Fe(CO)_2(n^5-C_5H_5)]^{-1}$  reacted with  $Fe(CO)_2(n^5-C_5H_5)(CH_2CH_2CH_2Br)$  giving only (A) and not <u>340</u> as was found in the comparable reactions⁴¹⁶ involving Mn(CO)_5CH_2CH_2Br and [Mn(CO)_5]^{-1}.

Reaction of the ferrocenyl compound  $Fe(n^5-C_5H_5)(n^5-C_5H_4COCH_2C1)$  with  $Na[Fe(CO)_2(n^5-C_5H_5)]$  afforded⁴¹⁷  $Fe(n^5-C_5H_5)\{n^5-C_5H_4COCH_2Fe(CO)_2(n^5-C_5H_5)\}$ , some of whose reactions are summarised in Scheme <u>58</u>. Treatment of  $Fe(CO)_2-(n^5-C_5H_5)I$  with  $Mn(CO)_3(n^5-C_5H_4Li)$  gave the mixed metal species  $Mn(CO)_3-(n^5-C_5H_4Fe(CO)_2(n^5-C_5H_5))$ .

Scheme 58



130

Trans-1,2-dibromo, cis- or trans-1,2-diiodo-benzocyclobutene reacted⁴¹⁸ with Na[Fe(CO)₂(n⁵-C₅H₅)] according to Scheme <u>59</u>; small amounts of oligomeric species, viz.  $(C_8H_6)_n$ [Fe(CO)₂(n⁵-C₅H₅)]₂, were also produced. There was no reaction between the dihalobenzocyclobutenes and MgBr[Fe(CO)₂(n⁵-C₅H₅)]. From a mixture of dibromonaphthocyclobutenes, only a monosubstituted iron complex was obtained (Scheme <u>59</u>), suggesting that in these reactions benzocyclobutene, <u>341</u>, is formed in the initial steps. A possible mechanism for the reactions

Scheme 59



is outlined in Scheme <u>60</u>. The involvements of carbanionic species such as <u>342</u>, a cyclobutene intermediate <u>343</u>,  $Fe(CO)_2(n^5-C_5H_5)H$ , or the stepwise reduction of the dihalobenzocyclobutene to a monohalo intermediate were discounted. The failure of MgBr[Fe(CO)₂( $n^5-C_5H_5$ )]to react with dihalobenzocyclobutenes may be due to the fact that the rate of formation of the requisite organometallic radicals may be slower than the rate of dimerisation of benzocyclobutadiene.

Reaction of  $Me_2C:C(NMe_2)Cl$  with  $Na[Fe(CO)_2(n^5-C_5H_5)]$  afforded⁴¹⁹  $Fe(CO)_2(n^5-C_5H_5)$  (C(NMe_2):CMe_2), <u>344</u>, which, on vacuum distillation may have given <u>345</u>.

Copper(I) acetylides  $[CuC_2R]_n$  reacted with  $Ru(PPh_3)_2(n^5-C_5H_5)Cl$  giving⁴²⁰ the binuclear species <u>346</u> (R = Ph) or monomers,  $Ru(PPh_3)_2(n^5-C_5H_5)(C_2R)(CuCl)$ (R = Ph, p-MeC₆H₄ or Me); the structures of some of these have been confirmed.⁴²¹ Treatment of  $Ru(PPh_3)_2(n^5-C_5H_5)(C_2Ph)(CuCl)$  with  $MeC(CH_2PPh_2)_3$  (L) gave CuLCl and  $Ru(PPh_3)_2(n^5-C_5H_5)(C_2Ph)$ . Other compounds prepared included  $Ru(n^5-C_5H_5)-$ 



 $(C_2R)_2(Cu(PPh_3))$  (R = p-MeC₆H₄ or p-C₆H₄), <u>347</u> which, it was suggested, may contain the group Cu⁺...Ru. Treatment of Ru(PPh₃)₂(n⁵-C₅H₅)Cl with CuC₂C₆F₅ gave Ru(PPh₃)₂(n⁵-C₅H₅)(C₂C₆F₅) and <u>348</u>. Reaction of Ru(PPh₃)₂(n⁵-C₅H₅)(C₂Ph) with Fe₂(CO)₉ afforded <u>349</u>.

Treatment of  $[Fe(CO)_2(n^5-C_5H_5)]_2$  with  $CF_3C\equiv CCF_3$  afforded⁴²² the bimetallic complex <u>350</u> whose structure was confirmed crystallographically (Fe-Fe 2.59Å). In this species the ferracyclohexa-2,5-dienone ring system has a boat conformation. A similar reaction involving  $[Ru(CO)_2(n^5-C_5H_5)]_2$  gave initially trans-Ru(CO)_2(n^5-C_5H_5)]_2 (C(CF_3):CE(CF_3)), also obtained by reaction of  $Ru(CO)_2(n^5-C_5H_5)H$  with hexafluorobut-2-yne. The trans-geometry of this product may be contrasted with that of the cis-insertion product obtained⁴²³ from  $Ru(PFh_3)_2(n^5-C_5H_5)H$  and  $CF_3C\equiv CCF_3$ . Further reaction of  $Ru(CO)_2(n^5-C_5H_5)[C(CF_3):CH(CF_3)]$  with the











R = CF₃ (350)



(351)





(353)

acetylene afforded <u>351</u>. Diels-Alder addition occurred when  $Fe(CO)_2(n^5-C_5H_5)-(n^1-C_5H_5)$  was treated with  $CF_3C\equiv CCF_3$  giving, <u>352</u> but with  $C_2F_4$ , <u>353</u> was formed, the structure of which was confirmed crystallographically.

Treatment of hexafluorobicyclo[2.2.0]hexa-2,5-diene with Na[Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )] gave⁴²⁴ <u>354</u>, which reacted with dienes according to Scheme <u>61</u>;⁴²⁵ one compound could be obtained independently as shown.

Scheme 61



Geometrical and Optical Isomerisation at M-C Bonds. A series of complexes  $Fe(CO)_2(n^5-C_5H_5)(CH_2R)$  and  $Fe(CO)L(n^5-C_5H_5)(CH_2R)$  (R = Ph, SiMe₃ or 1-naphthyl; L = P(OMe)₃, PMe₂Fh, PMePh₂ or PPh₃) has been synthesised.⁴²⁶ IR spectral studies indicated that there is rotational isomerism about the Fe-C bond, while ¹H n.m.r. spectral data indicated that interconversion between various rotamers in both systems is rapid in the n.m.r. time scale. Variable temperature n.m.r. spectral studies of the monocarbonyl species suggested that steric considerations determine the rotamer preferences. The most stable rotamer, figure <u>27</u>(A), is that in which the bulky n⁵-cyclopentadienyl group is gauche to both the methyl-enic protons. The relative proportion of the other rotamers (fig. <u>27</u>) for the ligands L, which were relatively small, was higher than might have been expected.

Reaction of racemic  $Fe(CO)L(n^5-C_5H_5)I(L = PPh_3 \text{ or } P(OPh)_3)$  with racemic MgBr{CHPh(SiMe_3)} afforded⁴²⁷  $Fe(CO)L(n^5-C_5H_5)$ {CHPh(SiMe_3)}. ¹H n.m.r. spectral data indicated that this was formed as a single diastereoisomer or that the two possible diastereomers had coincident spectra. Treatment of this alkyl (L = P(OPh)_3) with SO₂ did not afford a stable sulphinate but caused

134

#### Figure 27



epimerisation giving the starting material (RS-SR) and its diastereomer (RR-SS).

Treatment of the optically pure menthyl compound <u>355</u> with Na[Fe(CO)₂- $(n^{5}-C_{5}H_{5})]$  gave⁴²⁸ Fe(CO)₂ $(n^{5}-C_{5}H_{5})$ {CH₂O[(-)-menthyl]} which reacted further with PPh₃ under uv light affording (±)-Fe(CO)(PPh) $(n^{5}-C_{5}H_{5})$ {CH₂O[(-)-menthyl]}, X. Reaction of (+)-X with HCl in ether gave (+)-Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ (CH₂Cl) while the other optical isomer, (-)-X reacted similarly. The corresponding bromo- and iodo-methyl complexes were obtained similarly, and reacted, when optically pure, with MgXR or LiR giving Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ (CH₂R) with retention of configuration. Borohydride reduction of Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ -(CH₂Cl) gave Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ (CH₂R) with OMe⁻, CN⁻ or LiC₃H₅ (cyclopropyl) afforded Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ (CH₂R) with OMe⁻, CN⁻ or LiC₃H₅ (cyclopropyl) afforded Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ CH₂OG (Q = OMe, CN or C₃H₅) and treatment of X or Fe(CO)(PPh₃) $(n^{5}-C_{5}H_{5})$ (CH₂SO₃Me in contrast to results obtained⁴²⁷ with Fe(CO)₂ $(n^{5}-C_{5}H_{5})$ (CH₂OMe).

<u>Cleavage of, and Insertion into, M-C Bonds</u>. Reaction of  $Fe(CO)_2(n^5-C_5H_5)-CD_2CH_2Fh$  with bromine or iodine  $(X_2)$  gave⁴³⁰ the corresponding  $\beta$ -phenethylhalide as a l:1 mixture of  $FhCH_2CD_2X$  and  $PhCD_2CH_2X$ . With an excess of bromine in the presence of  $PhCH_2CD_2Br$ , the same products were obtained without rearrangement of the added bromide. These results suggested the presence of the intermediate <u>356</u> (L = CO; E = Br or I), and the neutral fragment  $Fe(CO)L(n^5-C_5H_5)E$  could function as a stable leaving group resulting in the formation of the phenonium ion, <u>357</u>. This cation could then undergo attack by X⁻ at either methylene group. It may further be observed that the double inversion at carbon resulting from this mechanism could explain the overall retention of configuration in the cleavage by halogens⁴³¹ of the Fe-C bond in  $Fe(CO)_2(n^5-C_5H_5)(CHDCHDPh)$ . Cleavage of the Fe-C bond by H⁺ or HgX⁺ appears to occur faster than the process leading to <u>357</u>



and hence HBr and HgBr₂ gave isomerically pure CHD₂CH₂Ph and HgBr(CD₂CH₂Ph).

Three pathways for the cleavage of the Fe-C bond in  $Fe(CO)_2(n^5-C_5H_5)R$  by HgCl₂ have been identified:⁴³²

(i) 
$$Fe(CO)_2(\eta^5-C_5H_5)R + HgCl_2$$
 (an excess)  $\rightarrow Fe(CO)_2(\eta^5-C_5H_5)Cl + HgClR$   
(ii)  $Fe(CO)_2(\eta^5-C_5H_5)R + HgCl_2 \rightarrow Fe(CO)_2(\eta^5-C_5H_5)HgCl + RCl$   
(iii)  $Fe(CO)_2(\eta^5-C_5H_5)R + HgCl_2 \rightarrow Fe$  containing material  $+ \frac{1}{2}Hg_2Cl_2$   
 $+ \text{ organic products } + CO$ 

The kinetics of these reactions have been interpreted in terms of the mechanism shown in Scheme  $\underline{62}$ .

Scheme 62



The nature of these reactions is determined by R. Thus, primary alkyl and aryl groups seem to promote reductive elimination of HgClR from <u>B</u> and entry of Cl would appear to account for the final products; bulky secondary and tertiary alkyl groups may be dissociated from <u>B</u> as carbonium ions, with assistance from solvent or Cl. This mechanism differs markedly from those of an  $S_E^2$  (retention or inversion) type considered⁴³³ for Hg(II) cleavage reactions but is entirely consistent with studies involving  $Fe(CO)(PPh_3)(\eta^5-1-Me-3-PhC_5H_3)Me$ .

In a slow reaction, TCNE inserted⁴³⁴ into the Fe-C bond of  $Fe(CO)_2(n^5-C_5H_5)R$ (R = Me, Et, Brⁿ, CH₂Ph or CHMePh) giving  $Fe(CO)_2(n^5-C_5H_5)\{C(CN)_2C(CN)_2R\}$  and  $Fe(CO)_2(n^5-C_5H_5)\{N:C:C(CN)C(CN)_2R\}$ , <u>358</u>. These species do not interconvert in solution, and the order of reactivity towards insertion, viz. R = PhCH₂ > PhMeCH > Me, Et, Brⁿ >> Ph. Treatment of  $Fe(CO)L(n^5-C_5H_5)(CH_2Ph)$  (L = PPh₃, P(OPh)₃ or PBu₃ⁿ) with TCNE afforded complexes analogous to <u>358</u>, but with the corresponding alkyl species (Me, Et or Brⁿ), the acyls  $Fe(TCNE)L(n^5-C_5H_5)(COR)$  were obtained. On storage, these species, reverted to  $Fe(CO)L(n^5-C_5H_5)R$  and/or  $Fe(CO)L(n^5-C_5H_5)\{N:C:C(CN)C(CN)\}R$ . A possible overall mechanism for the formation of these products is shown in Scheme <u>63</u>. For the species  $Fe(CO)L(n^5-C_5H_5)R$ , the rate of insertion when R was held constant was  $L = PBu_3^n > PFh_3 > P(OPh)_3$ , reflecting the increasing basicity of R and L. Using the optically active  $Fe(CO)_2(n^5-C_5H_5)(CHMePh)$ , both <u>358</u> and insertion products were formed but it proved very difficult to measure specific rotations. The

Scheme 63



References p. 168



data were not inconsistent with a radical pathway in formation of the products.

Treatment of 2-alkenyl and 2-alkynyl complexes of  $Fe(CO)_{2}(n^{5}-C_{5}H_{5})$  with hexafluoroacetone afforded⁴³⁸ complexes of the type <u>359</u> (R = Me or Ph) and <u>360</u> (R = H, R' = R'' = Me; R = R' = H, R'' = H, Me or Ph). It was noted that, as with  $ClSO_2NCO$ ,  $Fe(CO)_2(n^5-C_5H_5){CH_2C(Me):CH_2}$  reacted with  $(CF_3)_2CO$  giving, in addition to the cyclic species 360, an insertion product,  $Fe(CO)_{2}(\eta^{5}-C_{5}H_{5})$  -{OC(CF3)_CH_C(:CH_)CH_C(CF3)_OH}. This may be attributed to a greater lability of the Fe olefin bond in a dipolar intermediate (Scheme 64) which favours dissociation and therefore apparent insertion. The possibility that enantiomeric pairs of molecules could be formed as a result of these reactions was discussed in the light of i.r. spectral data obtained from the products.

Scheme 64



138

The product of the reaction of  $Fe(CO)_2(n^5-C_5H_5)Me$ , originally described⁴³⁶ as <u>361</u>, has been obtained⁴³⁷ in improved yield in the presence of galvinoxyl, and has been reformulated as <u>362</u>. A possible mode of formation is outlined in Scheme <u>65</u>.

Scheme 65



Photolysis of  $Fe(CO)(CNC_6H_{11})(n^5-C_5H_5)(COMe)$  afforded⁴³⁸ <u>363</u> which reacted further with Bu^tNC giving <u>364</u>; <u>363</u> was also formed by reaction of  $Fe(CO)_2^{-}(n^5-C_5H_5)Me$  with  $C_6H_{11}NC$  under or light. However, treatment of  $Fe(CO)(CNBu^{t}) - (n^5-C_5H_5)Me$  with  $C_6H_{11}NC$  gave only <u>365</u>. A possible mechanism for these reactions is given in Scheme <u>66</u>.

As mentioned earlier (ref. 427) the diastereoisomer [RSSR]Fe(CO){P(OPh)}- $(n^5-C_5H_5)$ {CHPh(SiMe_3)} was epimerised⁴³⁹ when treated with SO₂, giving, not the expected sulphinates which could not be isolated, but a mixture (40:60) of the starting material and the other diastereoisomer (RR-SS). It seems possible that



References p. 168



the mechanism may involve the initial formation of the (RR-SS) sulphinate, viz.  $Fe(CO){P(OPh)_3}(n^5-C_5H_5){SO_2CHPh(SiMe_3)}$ , and this may epimerise giving a mixture of the (RR-SS) form and the (RS-SR) form. In turn, the latter could lose  $SO_2$ giving the (RR-SS) alkyl. The pathway to the thermodynamically less stable (RR-SS) alkyl must involve the sequence

$$(RSSR)$$
-[Fe]R + SO  $(RRSS)$ -[Fe]SO  $R = (RSSR)$ -[Fe]SO  $R = (RRSS)$ -[Fe]R

and is favoured over the pathway

 $(RSSR)-[Fe]R \hookrightarrow (RRSS)-[Fe]SO_{2}R$ .

The rate of formation of (RSSR)-[Fe]R becomes competitive when sufficient heat is supplied to overcome the activation barrier for the above reaction, while retention of SO₂ in the reaction solution allows the system to equilibrate to the thermodynamically favoured product. Conversely, cooling the reaction mixture makes the conversion to the (RRSS)-alkyl more viable while rapid removal of SO₂ from a solution containing mainly this diastereomer would prevent its equilibration to the (RSSR)-form. It seems possible that the intermediate sulphinates may dissociate in polar solvents, giving  $[Fe(CO)L(solvent)(n^5-c_5H_5)]^+$  and  $[SO_2CHPh(SiMe_3)]^-$ , and the latter would be susceptible to electrophilic attack by SO₂, resulting in Welden inversion (Scheme <u>67</u>).

Scheme 67



It has been found that Na[Fe(CO)₂( $n^5-C_5H_5$ )] reacted with a large excess of SO₂ in THF at low temperatures giving⁴⁴⁰ ( $n^5-C_5H_5$ )(CO)₂FeS(:O)₂S(:O)₂Fe(CO)₂-( $n^5-C_5H_5$ ). It seems likely that this species was obtained via ( $n^5-C_5H_5$ )(CO)₂-FeS(:O)₂Fe(CO)₂( $n^5-C_5H_5$ ), and selective removal of one SO₂ group was achieved from the 'double insertion' product under uv light, although decomposition and the formation of [Fe(CO)₂( $n^5-C_5H_5$ )]₂ also occurred. Treatment of [Fe(CO)₂-( $n^5-C_5H_5$ )(SO₂)]₂ with MeI afforded Fe(CO)₂( $n^5-C_5H_5$ )(SO₂Me) and Fe(CO)₂( $n^5-C_5H_5$ )I, as was found also with [Fe(CO)₂( $n^5-C_5H_5$ )₂](SO₂).

<u>Carbonylation and Decarbonylation Reactions</u>. UV irradiation of  $Fe(CO)_2(n^5-C_5H_5)$ -Me in the presence of AsPh₃ or SbPh₃ in acetonitrile gave⁴⁴¹  $Fe(CO)L(n^5-C_5H_5)$ -(COMe). Photochemical or mass spectrometric decarbonylation of  $Fe(CO)_2(n^5-C_5H_5)$ -(COMe) occurs⁴⁴² with the loss of a terminal CO group, (Scheme <u>68</u>).





The intermediate,  $Fe(CO)(n^5-C_5H_5)(COMe)$  can react with PPh₃ faster than the methyl group can migrate (Scheme <u>69</u>).

Treatment of  $Fe(CO)_2(\eta^5-C_5H_5)(COR)$  (R = cyclopropyl) with  $Rh(PPh_3)_3CL$ afforded⁴⁴³  $Fe(CO)(PPh_3)(\eta^5-C_5H_5)(COR)$  and  $Rh(CO)(PPh_3)_2CL$ .

#### Compounds Containing Group IV Elements other than Carbon

Treatment of (-)-SiMePh(1-naphthyl)Cl with  $[Fe(CO)_2(n^5-C_5H_5)]^-$  resulted⁴⁴⁴ in inversion at silicon and the formation of (+)-<u>366</u>. Chlorination of this afforded (+)-SiMePh(1-naphthyl)Cl which, on reduction with LiAlH₄ underwent inversion group (-)-SiHMePh(1-naphthyl). However, UV irradiation of (+)-<u>366</u>



in the presence of PPh₃ gave the diastereomers (+)- and (-)-<u>367</u>. Chlorination of <u>367</u> proceeded with cleavage of the Fe-C bond but with retention of configuration at silicon (reduction with LiAlH₄ to the corresponding silane again occurred with inversion), whereas chlorination in the presence of PPh₃ resulted in inversion at the Si atom (giving, from (+)- and (-)-<u>367</u>, (-)-SiMePh(1-naphthyl)Cl and its (+)-diastereomer, respectively). It was noted that the Fe-Si bond <u>366</u> was not cleaved by Cl₂/FFh₃. Reaction of Na[Fe(CO)₂( $\eta^5$ -C₅H₅)] with SiMe₂R -(CH₂Cl) (R = H, Me or Ph) afforded⁴⁴⁵ Fe(CO)₂( $\eta^5$ -C₅H₅)(CH₂SiMe₂R). It was found that the chemical character of the Fe-C  $\sigma$  bond was relatively unaffected by



the silvl substituent. Thus treatment with tertiary phosphines (L = PPh₃, PMePh₂; PEtPh₂; R = Me) gave Fe(CO)L(n⁵-C₅H₅)(COCH₂SiMe₂R) which, in the presence of traces of HCl (when L = PPh₃; R = Me), produced Fe(CO)(PPh₃)(n⁵-C₅H₅)(COMe) and SiMe₃Cl. Photolysis of Fe(CO)₂(n⁵-C₅H₅)(CH₂SiMe₂R) in the presence of tertiary phosphines gave Fe(CO)L(n⁵-C₅H₅)(CH₂SiMe₂R) (R = Me or Ph) while with SO₂ Fe(CO)₂(n⁵-C₅H₅)(SO₂CH₂SiMe₂R) was produced. Thermal decomposition or treatment with L, of Fe(CO)₂(n⁵-C₅H₅)(CH₂SiMe₂H), afforded Fe(CO)₂(n⁵-C₅H₅)(SiMe₃) and Fe(CO)L(n⁵-C₅H₅)(SiMe₂), respectively.

Reaction of Na[Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )] with SiMe_n(CH₂Cl)Cl_{3-n}, SiMe₂(CH₂Cl)Br or SiMe₂(CH₂Br)Br afforded⁴⁴⁶ Fe(CO)₂( $n^{5}-C_{5}H_{5}$ ) SiMe_n(CH₂Cl)Cl_{2-n} (n = 0, 1 or 2) and Fe(CO)₂( $n^{5}-C_{5}H_{5}$ ){SiMe₂(CH₂Br)}. With SiMe₃(CH₂Br), Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )(CH₂SiMe₃) was produced. On heating, Fe(CO)₂( $n^{5}-C_{5}H_{5}$ ){SiMe_n(CH₂Cl)Cl_{2-n}} (n = 1 or 2) rearranged to Fe(CO)₂( $n^{5}-C_{5}H_{5}$ ){CH₂SiMe_nCl_{2-n}}, while Fe(CO)₂( $n^{5}-C_{5}H_{5}$ ){Si(CH₂Cl)-Cl₂} was catalytically rearranged by AlCl₃ to Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )(CH₂SiCl₃). Treatment of SiMe₂(CH₂Br)Cl with Na[Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )] gave either BrCH₂Si(Me)₂-CH₂SiMe₂Cl or Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )(SiMe₃), depending upon conditions, and a possible mechanism is shown in Scheme <u>70</u>.

Scheme 70



Reaction of SiR₂(CH:CH₂)Cl with  $[Fe(CO)_2(n^5-C_5H_5)]^-$  afforded⁴⁴⁷ Fe(CO)₂- $(n^5-C_5H_5)$ {SiR₂(CH:CH₂)} (R = Me or Cl). These compounds, on treatment with HX reacted according to three pathways: (a) formation of Fe(CO)₂( $n^5-C_5H_5$ )H and

SiR₂(CH:CH₂)X; (b) formation of Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ )X and SiR₂(CH:CH₂)H; or (c) formation of Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ ){SiR₂CH₂CH₂X}. Treatment of Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ )-{SiCl₂(CH:CH₂)} with AgBF₄ afforded first Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ ){SiF₂(CH:CH₂)} and then Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ )(SiF₂). The reactions of Fe(CO)₂( $\eta^{5}-C_{5}H_{5}$ ) {SiMe₂(CH:CH₂)} with phosphorus ylides are summarised in Scheme <u>71</u>.

Scheme 71

Reaction of Na[Fe(CO)₂( $n^5-C_5H_5$ )] with SiMe₂(CH:CH₂)(CH₂Cl), SiMe₂(OMe)-(CH₂Cl), ClCH₂Si(Me)₂OSiMe₂CH₂Cl, ClCH₂Si(Me)₂NHSiMe₂CH₂Cl, O(SiMe₂O)₃SiMeCH₂Cl and SiMe₂(NEt₂)(CH₂Cl) resulted⁴⁴⁸ in cleavage of a C-Cl bond and formation of the appropriate monometallic or bimetallic alkyl derivative. Reaction with SiHMe₂(CH₂I) gave Fe(CO)₂( $n^5-C_5H_5$ ){CH₂SiMe₂H which decomposed thermally to Fe(CO)₂( $n^5-C_5H_5$ )(SiMe₃), but reacted with MeOH, Ph₃CCl and [Ph₃C][BF₄] giving respectively, Fe(CO)₂( $n^5-C_5H_5$ )(CH₂SiMe₂(OMe)}, Fe(CO)₂( $n^5-C_5H_5$ )(CH₂SiMe₂Cl) and Fe(CO)₂( $n^5-C_5H_5$ )(SiMe₂F). Reaction of [( $n^5-C_5H_5$ )(CO)₂FeSiMe₂]₂O with BCl₃ afforded an unstable 1:1 adduct ( )O + BCl₃). Treatment of ( $n^5-C_5H_5$ )(CO)₂-FeSi(Me)₂CH₂Fe(CO)₂( $n^5-C_5H_5$ ) with HCl gave [Fe(CO)₂( $n^5-C_5H_5$ )]₂ and SiMe₃Cl while Fe(CO)₂( $n^5-C_5H_5$ )(CH₂SiMe₂R) reacted with PPh₃ giving the acyl Fe(CO)(PPh₃)-( $n^5-C_5H_5$ )(COCH₂SiMe₂R). The following reactions of bimetallic species were also observed:

$$(n^{5}-c_{5}H_{5})(CO)_{2}FeCH_{2}Si(Me)_{2}Fe(CO)_{2}(n^{5}-c_{5}H_{5}) + PPh_{3} \longrightarrow (n^{5}-c_{5}H_{5})(CO)(PPh_{3})FeCCCH_{2}Si(Me)_{2}Fe(CO)_{2}(n^{5}-c_{5}H_{5})(CO)(PPh_{3})FeCCCH_{2}SiMe_{2}NH + PPh_{3} \longrightarrow (n^{5}-c_{5}H_{5})(CO)(PPh_{3})FeCOCH_{2}SiMe_{2}NH - SiMe_{2}CH_{2}Fe(CO)_{2}(n^{5}-c_{5}H_{5}) + (n^{5}-c_{5}H_{5})(CO)_{2}FeCCCH_{2}SiMe_{2}]_{2}NH + (n^{5}-$$
Treatment of  $Fe(CO)(PPh_3)(\eta^5-C_5H_5)(COCH_2SiMe_2(OMe))$  with water afforded  $Fe(CO)-(PPh_3)(\eta^5-C_5H_5)(COMe)$  and  $SiMe_2(OMe)OH$ .

Displacement of NaF occurred when  $\operatorname{SiMe}_3(C_6F_5)$  was treated⁴⁴⁹ with Na[Fe(CO)₂(n⁵-C₅H₅)], the product being <u>368</u> (R = SiMe₃); similar products were obtained containing R = SiPh₂(C₆F₅) and SiMe₂(CH₂)₃SiMe₂. Treatment of SiPh₂(C₆F₅)₂ or (C₆F₅SiMe₂)₂O with [Fe(CO)₂(n⁵-C₅H₅)]⁻ afforded (n⁵-C₅H₅)(CO)₂-FeQFe(CO)₂(n⁵-C₅H₅), Q = SiPh₂ or (Me₂Si)₂O.

With HX (X = I or Br),  $Fe(CO)_2(n^5-C_5H_5)(SiR_3)$  (R = OMe or NHC₆H₁₁) gave⁴⁵⁰  $Fe(CO)_2(n^5-C_5H_5)(SiX_3)$ ;  $Fe(CO)_2(n^5-C_5H_5)\{Si(OMe)Br_2\}$  was also isolated. Exchange of Cl was achieved in metathetical reactions between  $Fe(CO)_2(n^5-C_5H_5)$ -and NaX (X = N₃, OCN or SCN), while with  $LiAlH_{l_1}$ , the trichlorosilyl complex afforded  $Fe(CO)_2(n^5-C_5H_5)(SiH_3)$ .

In a reaction between Na[Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )], MX₂ (M = Ge, Sn or Fb; X = halide) and RX (R = long chain alkyl group,  $C_7-C_{16}$ ), the species Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )-(MRX₂) were formed.⁴⁵¹ Mass spectrometric studies of Fe(CO)₂( $n^{5}-C_{5}H_{5}$ )(GeCl₂R) (R = Cl, Me, Et, Prⁿ or CH₂Ph) revealed⁴⁵² that, in the probe, rearrangement could occur, the  $C_5H_5$  ring migrating to Ge or the Cl atoms migrating to Fe.

Reaction of  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{MMe}_{3})_{2}$  (M = Si or Ge) with azulene gave⁴⁵³ <u>369</u> (R = MMe₃) which, when M = Ge, on treatment with iodine afforded <u>369</u> (R = I). With guaiazulene,  $\operatorname{Ru}(\operatorname{CO})_{4}(\operatorname{GeMe}_{3})_{2}$  produced <u>370</u> and/or <u>371</u>, but ⁴,6,8-trimethylazulene did not give analogous products, presumably because a methyl group blocks C(6) thereby preventing migration of the 'GeMe₃; group. From this last reaction [Ru(CO)₃ (GeMe₃)(µ-GeMe₂)]₂ and traces of Ru(CO)₂(C₁₀H₆Me₃)-







(GeMe₃) were obtained. Reaction of  $[Ru(CO)_4SiMe_3]_2$  with azulene gave <u>369</u> (R = SiMe₃) together with <u>372</u>, and  $[Ru(CO)_2(C_{10}H_8)(SiMe_3)]_2$ , <u>373</u>. Coupling of two azulene groups in the presence of iron carbonyls has already been observed⁴⁵⁴ and the structure of <u>373</u> is believed to be essentially similar to that of  $[Mn(CO)_3(C_{10}H_8)]_2$ .⁴⁵⁵ From the reaction between  $Ru_3(CO)_{12}$  and guaiazulene, three products were obtained:  $Ru_2(CO)_5[C_{10}H_5(1,4-Me_2)(7-Pr^1)]$ ,  $Ru_3(CO)_7$ - $\{C_{10}H_5(1,4-Me_2)(7-Pr^1)\}$  (thought to be similar to  $Ru_3(CO)_7(C_{10}H_8)$ ,⁴⁵⁶ and  $Ru_4(CO)_9[C_{10}H_5(1,4-Me_2)(7-Pr^1)]$ ) (believed to be similar to  $Ru_4(CO)_9[C_{10}H_5^{-1}]$ . The reaction sequence is outlined in Scheme <u>72</u>, and may occur

Scheme 72



because of the driving force of exulene to form a cyclopentedienyl ring. The exclusive migration of the MMe₃ group to C(6) is perhaps due to steric factors, while the suprafacial 1,3-hydrogen shift can be attributed to increased stability of the conjugated as opposed to the non-conjugated diene system.

The rate of the (electrophilic) iodination of  $Fe(CO)_2(n^{5}-C_5H_5)SnMe_3$  in carbon tetrachloride was faster than⁴⁵⁸ that the comparable Mn, Mo and W compounds, and a mechanism is outlined in Scheme <u>73</u>. Treatment of  $[Fe(CO)_2-(n^{5}-C_5H_5)]_2SnCl_2$  with Li and PPh₃ gave⁴⁵⁹  $[Fe(CO)_2(n^{5}-C_5H_5)]_2SnCl_3$ , while with  $[Fe(CO)_2(n^{5}-C_5H_5)]_2SnPh_2$ ,  $[Fe(CO)_2(n^{5}-C_5H_5)]_2SnPh_2$ . Reaction of  $Fe(CO)_2(n^{5}-C_5H_5)]_2SnPh_3$ .

<u>Complexes Containing Group V Ligands</u>. Voltammetric studies have shown⁴⁶¹ that  $FeL_2(n^5-C_5H_5)X$  (L = CNR, PR₃ or P(OR) ; X = halide, H, Me or SnX₃) and  $Fe(diphos)(n^5-C_5H_5)X$  (diphos =  $Fh_2PCH_2CH_2PFh_2$ ; X = halide, Me, SnMe₃ or SnCl₃) are readily oxidised (except when X = SnCl₃) in a one-electron process. The

Scheme 73



E₁-value for the process is strongly influenced by L or diphos and X, oxidation becoming more facile as the capacity of the ligand to remove charge from the system decreases. Treatment of Fe(diphos)( $n^{5}-C_{5}H_{5}$ )X (X = Cl, Br, I, Me, SnMe₃) with AgPF₆ gave [Fe(diphos)( $n^{5}-C_{5}H_{5}$ )X][PF₆]. Similarly, treatment of Fe{P(OPh)₃}₂-( $n^{5}-C_{5}H_{5}$ )I with NOPF₆, a good and relatively mild one-electron oxidising agent, gave [Fe{P(OPh)₃}₂( $n^{5}-C_{5}H_{5}$ ) I][PF₆], but the identical reaction with Fe(CO) - $P(OPh)_{3}$ ( $n^{5}-C_{5}H_{5}$ )I afforded [Fe(NO){P(OPh)₃}( $n^{5}-C_{5}H_{5}$ )I][PF₆]. However, reaction of Fe(CO)(CNPh)( $n^{5}-C_{5}H_{5}$ )I with NOPF₆ gave [Fe(CO)(CNPh)₂( $n^{5}-C_{5}H_{5}$ )]-[PF₆] while Fe(CNPh)₂( $n^{5}-C_{5}H_{5}$ )I afforded [Fe(CNPh)₃( $n^{5}-C_{5}H_{5}$ )][PF₆].

The structures of  $Fe(CO)_2(n^5-C_5H_5)\{P(CF_3)_2\}$  and  $Fe(CO)_2(n^5-C_5H_5)\{P(:O)-(CF_3)_2\}$  have been determined crystallographically.⁴⁶² In the former, the Fe-P distance is 2.27A while in the latter it is 2.19A, the covalent radius of the phosphorus atom being essentially the same in both cases. These Fe-P bond lengths were interpreted in terms of increased Fe+P  $d_{\pi}-d_{\pi}$  bonding in the P(:O)(CF₃)₂ compound.

The species obtained⁴⁶³ by photolysis of  $Fe(CO)_2(n^5-C_5H_5)R$  or  $Fe(CO)-\{P(OPh)_3\}(n^5-C_5H_5)R$  (R = Me or Ph) in the presence of  $P(OPh)_3$  and described as  $[Fe\{P(OPh)_3\}_2(n^5-C_5H_5)]_2$ , has been reformulated⁴⁶⁴ as <u>374</u> (L =  $P(OPh_3)$  on the basis of mass and ³¹P n.m.r. spectral measurements. UV irradiation of  $Fe(CO)-\{P(OPh)_3\}(n^5-C_5H_5)Ph$  was found to give <u>372</u> (L = CO). The ³¹P n.m.r. spectrum of  $Fe(CO)(Ph_2PCH_2CH_2P(Ph)CH_2CH_2PPh_2)(n^5-C_5H_5)(COMe)$  indicated⁴⁶⁵ that it consisted of two isomers <u>375</u> and <u>376</u>. Treatment of  $Fe(CO)_2(n^5-C_5H_5)I$  with  $PhP(CH_2CH_2PMe_2)_2$  gave⁴⁶⁶ [ $Fe\{PhP(CH_2CH_2PMe_2)_2\}(n^5-C_5H_5)]I$ , while [ $Fe(CO)_2(n^5-C_5H_5)]_2$  reacted with  $Me_2PCH_2CH_2PPh_2$  giving  $Fe_2(CO)_2(Me_2PCH_2CH_2PPh_2)(n^5-C_5H_5)_2$  which contained bridging but no terminal CO groups. Reaction of  $Fe(CO)_2(n^5-C_5H_5)CI$  with diphos- $(Ph_2PCH_2CH_2PPh_2)$  afforded⁴⁶⁷ [ $Fe(CO)(diphos)(n^5-C_5H_5)$ ]C1 and conversion of this to the  $PF_6$  salt followed by UV irradiation under  $N_2$  led to the formation of [ $Fe(diphos)(n^5-C_5H_5)$ ]( $N_2$ )][ $PF_6$ ], <u>377</u>. In acetone, this dissociated to give [ $Fe(diphos)(acetone)(n^5-C_5H_5)$ ] $PF_6$  (isolated as THF solvates).

Treatment of  $Fe(CO)_2(n^{5-}C_5H_5)I$  with L (PPh₃, PMePh₂, PMe₂Ph or PMe₃) and then with AgBF₄ and NaCN afforded⁴⁶⁸  $Fe(CO)L(n^{5-}C_5H_5)(CN)$ . From n.m.r. spectral studies assisted by the shift reagent  $Eu(fod)_3$ , it was established that some of these complexes existed in preferred conformations. Thus, when  $L = PMePh_2$ , the



phenyl groups appear to adopt a conformation (figure 28A) in which they are orientated adjacent to the  $C_{5H_5}$  ring, and when  $L = PMe_2Ph$ , similar conformations are preferred (figure 28A or C). The maximum barriers to rotation about the Fe-P and P-C bonds were estimated to be 8.0 and 7.6 kcal/mol, respectively. A method of assigning resonances of diastereotopic nuclei to particular nuclei was presented.

Figure 28



An excess of KCN reacted with  $[Fe(CO)_2(PPh_3)(n^5-C_5H_5)]I$  giving⁴⁶⁹  $Fe(CO)(PFh_3)(n^5-C_5H_5)(CN)$  which, on treatment with  $[Et_3O][PF_6]$ , afforded  $Fe(CO)(CNFt)(PPh_3)(n^5-C_5H_5)][PF_6]$ . This species was shown clearly to contain an isonitrile ligand by comparison with  $[Fe(CO)(NCMe)(PFh_3)(n^5-C_5H_5)][BF_4]$ , and was found not to undergo reactions with nucleophiles to give additional products. While  $Fe(CO)(PPh_3)(n^5-C_5H_5)I$  reacted with an excess of KCN giving  $K[Fe(PFh_3)(n^5-C_5H_5)(CN)_2]$ , the products obtained from  $Fe(CO)_2(n^5-C_5H_5)I$  were solvent dependent: with KCN in ethanol,  $Fe(CO)_2(n^5-C_5H_5)(CN)$  was produced whereas when water was present,  $K[Fe(CO)(n^5-C_5H_5)(CN)_2]$  was formed. Reaction of  $Fe(CO)(PPh_3)(n^5-C_5H_5)I$  with  $LiCH_2CN$  or of  $[Fe(CO)(C_2H_1)(PPh_3)(n^5-C_5H_5)]^+$  with KCN gave  $Fe(CO)(PPh_3)(n^5-C_5H_5)\{(CH_2)_nCN\}$  (n = 1 or 2). The ¹H and ¹³C n.m.r. spectra of these complexes, some of which have chiral metal centres, were measured in the presence of optically active shift reagents, and resolution of the enantioptic protons of the  $C_5H_5$  ring in  $Fe(CO)(PPh_3)(n^5-C_5H_5)(CN^{\prime})$  and  $Fe(CO)(PPh_3)(n^5-C_5H_5)(CH_2CN)$  was observed.

While  $\operatorname{Ru}(\operatorname{CO})_2(n^5-C_5H_5)$ Cl showed no tendency to dissociate in alcohols,  $\operatorname{Ru}(\operatorname{PFh}_3)_2(n^5-C_5H_5)$ Cl revealed⁴⁷⁰ considerable ionic behaviour. Thus, the latter very readily forms  $[Ru(PPh_3)_2(n^5-C_5H_5)L]^2$ , where z = +1 or 0 when L is a neutral or anionic ligand, L being CO, N2, BPh, BPh3(CN) or BH3(CN). From methanol in the presence of BPh₁, the species [Ru(PPh₃)₂(MeOH)(n⁵-C₅H₅)][BPh₄] could be isolated, but under CO in ethanol, [Ru(CO)(PPh3), (n⁵-C5H5)][BPh4] was formed. Only under high pressure could the related  $[Ru(CO)_3(\eta^5-C_5H_5)]^+$  be obtained, and when  $\operatorname{Ru}(\operatorname{PPh}_3)_2(n^5-C_5H_5)$ Cl was treated with CO under pressure in benzene the known⁴⁷¹ Ru(CO)(PPh₃)( $n^5-C_5H_5$ )Cl was formed. The complexes RuL₂( $n^5-C_5H_5$ )(NCBX₃)  $(L = CO \text{ or PPh}_3, X = H \text{ or Ph})$  rearranged readily forming  $RuL_2(n^5-C_5H_5)(CN)$  or  $\operatorname{RuL}_{2}(n^{5}-C_{5}H_{5})(\widetilde{CNBX}_{3})$ . When  $\operatorname{Ru}(\operatorname{CO})_{2}(n^{5}-C_{5}H_{5})$ Cl was refluxed with NaBPh₄ in methanol, [Ru(CO) (MeOH)(n⁵-C₅H₅)][3Ph₁] was formed, which decomposed to  $Ru(CO)_2(n^5-C_5H_5)Ph.$  However on refluxing  $[Ru(CO)_2(acetone)(n^5-C_5H_5)][BPh_4]$ in acetone, only  $[Ru(CO)_2(n^5-C_5H_5)]_2$  was produced. A similar reaction involving  $Ru(PPh_3)_2(\eta^5-C_5H_5)Cl$ , NaBPh₄ and alcohols gave the  $\eta^6$ -arene complex, <u>378</u> (analogues containing  $n^5-C_5H_1Me$  were also prepared). No reaction was observed when  $\operatorname{Ru}(PPh_3)_2(\eta^5-C_5H_5)Cl$  was heated in alcohol in the presence of benzene,





(379)



(380)



mesitylene, hexamethyl- or hexafluoro-benzene. Treatment of  $\operatorname{Ru}(\operatorname{CO}_2(n^5-C_5H_5)\operatorname{Cl})^{1}$ with  $\operatorname{BPh}_3(\operatorname{CN})^{-1}$  in refluxing ethanol afforded  $\operatorname{Ru}(\operatorname{CO}_2(n^5-C_5H_5)\operatorname{CN})^{1}$ , whereas the corresponding cations  $[\operatorname{Ru}(\operatorname{CO}_2(\operatorname{solvent})(n^5-C_5H_5)]^{+1}$  (solvent = MeOH or acetone) gave  $\operatorname{Ru}(\operatorname{CO}_2(n^5-C_5H_5)(\operatorname{NCBPh}_3)$ . With  $\operatorname{BPh}_3(\operatorname{CN})^{-1}$ ,  $[\operatorname{Ru}(\operatorname{PPh}_3)_2(\operatorname{acetone})(n^5-C_5H_5)]^{+1}$ gave  $\operatorname{Ru}(\operatorname{PPh}_3)_2(n^5-C_5H_5)(\operatorname{CNBPh}_3)$  (via the intermediate  $\operatorname{Ru}(\operatorname{PPh}_3)_2(n^5-C_5H_5)(\operatorname{NCBPh}_3))$ , also obtainable from  $\operatorname{Ru}(\operatorname{PPh}_3)_2(n^5-C_5H_5)\operatorname{CN}$  and  $\operatorname{BPh}_3$ . Treatment of  $[\operatorname{Fe}(\operatorname{CO})_2^{-1}$ (acetone) $(n^5-C_5H_5)]^{+1}$  with  $\operatorname{BPh}_3(\operatorname{CN})^{-1}$  provided  $\operatorname{Fe}(\operatorname{CO}_2(n^5-C_5H_5)(\operatorname{NCBPh}_3))$  which did not isomerise to the isonitrile. Reaction of  $[\operatorname{Ru}(\operatorname{PPh}_3)_2(\operatorname{acetone})(n^5-C_5H_5)]^{+1}$ with  $\operatorname{BH}_3(\operatorname{CN})^{-1}$  gave an inseparable mixture of  $\operatorname{Ru}(\operatorname{PPh}_3)_2(n^5-C_5H_5)\operatorname{CN}$  and  $\operatorname{Ru}(\operatorname{PPh}_3)_2^{-1}$  $(n^5-C_5H_5)(\operatorname{CNBH}_3)$ , while  $[\operatorname{Ru}(\operatorname{CO}_2(\operatorname{acetone})(n^5-C_5H_5)]^{+1}$  afforded a brown solid containing  $[\operatorname{Ru}(\operatorname{CO}_2(n^5-c_5H_5)]_2^{-1}$ .

The complexes  $M(CO)_3(n^5-C_5H_5)SbMe_2$  (M = Mo or W) reacted with  $Fe_2(CO)_9$  giving⁴⁷²  $M(CO)_3(n^5-C_5H_5)Sb(Me)_2Fe(CO)_4$ .

<u>Compcunds Containing Sulphur</u>. Reaction of  $Fe(CO)_2(n^5-C_5H_5)(SR)$  (R = Et or Bu^t) with  $[Fe(CO)_2(acetone)(n^5-C_5H_5)]^+$  afforded⁴⁷³  $[\{Fe(CO)_2(n^5-C_5H_5)\}_2(SR)]^+$ , <u>379</u>. Photolysis of this afforded  $[Fe_2(CO)_3(n^5-C_5H_5)_2(SR)]^+$ , probably <u>380</u>, which, when R = Et, could be reduced using sodium amalgam to the unstable green  $Fe_2(CO)_3(n^5-C_5H_5)_2(SEt)$  ( $\mu$  ca. 1.5 B.M.) and red  $[Fe_2(CO)_3(n^5-C_5H_5)(SEt)]^-$ . On heating or photolysing <u>379</u> (R = Et, Fe(CO)_2(n^5-C_5H_5)H was formed.

In THF, it was observed⁴⁷⁴ that the unstable isomer of  $[Fe(CO)(n^5-C_5H_5)-{S(p-MeC_6H_4)}]_2$  reacted with CO at room temperature to give a 1:1 mixture of the stable and unstable isomer, together with a small amount of  $Fe(CO)_2(n^5-C_5H_5)-{S(p-MeC_6H_4)}$ . The stable isomer behaved similarly, giving a 3:1 mixture of stable and unstable forms as well as the dicarbonyl monomer. When this latter mixture was refluxed in THF, under CO, 60% of the dicarbonyl was obtained. The mechanism of these reactions can be depicted in Scheme <u>74</u>. Reaction of  $[Fe(CO)_2(n^5-C_5H_5)]_2$  with  $R_2S_2$  (R = Me, Et,  $Pr^i$ ,  $Bu^n$ ,  $Bu^t$ ,  $CH_2Ph$  or Ph) gave⁴⁷⁵  $Fe_3(CO)_2(n^5-C_5H_5)_3S(SR)$ , <u>381</u> and  $[Fe(CO)(n^5-C_5H_5)(SR)]_2$ . The latter species could be isolated as two isomers when R = Me, Et,  $Pr^i$  or  $Bu^n$ , probably <u>382</u> and

Scheme 74



<u>383</u>, but as only one isomer when  $R = Bu^t$  or  $CH_2Ph$ ; three isomers were observed when R = Ph, one certainly <u>384</u> and the others <u>385a</u>, <u>b</u> or <u>c</u>. The trinuclear species <u>381</u> was observed voltammetrically to undergo two one-electron oxidation steps, and its treatment with iodine afforded  $[Fe_3(CO)_2(n^5-C_5H_5)_3S(SR)]I$ . This was unstable, however, and readily decomposed into  $[Fe(CO)(n^5-C_5H_5)(SR)]_2^+$ .

Reaction of  $Fe(CO)_2(n^5-C_5H_5)(SR)$  (R = CF₃ or C₆F₅) with hexafluorobut-2-yne afforded⁴⁷⁶ <u>386</u> which could be photolytically decarbonylated to <u>387</u>. Photolysis of <u>387</u> (R = C₆F₅) with more CF₃C=CCF₃ gave <u>388</u>. Treatment of  $[Fe(CO)_3(SR)]_2$  (R = CF₃ or C₆F₅) with CF₃C=CCF₃ at moderate temperatures afforded <u>389</u> (L = CO), and the structure of the species where R = CF₃ has been confirmed by X-ray crystallography.⁴⁷⁷ With PPh₃, <u>389</u> (L = CO) underwent displacement of one CO group, giving <u>389</u> (L = PPh₃). At higher temperatures,  $[Fe(CO)_3(SR)]_2$  reacted with the butyne giving the cyclopentadieneone complex <u>390</u>.



(382)



383



(384)



(385a)



(385b)



(385c)





Upon irradiation at 366 nm in THF at 30°C,  $Fe(CO)_2(n^5-C_5H_5)(SCN)$  and  $Fe(CO)_2(n^5-C_5H_5)(NCS)$  are interconverted.⁴⁷⁸ Using  $Eu(fod)_3$  as a shift reagent, these isomers can be readily differentiated⁴⁷⁹ by observing the substantial shifts of the cyclopentadienyl protons in  $Fe(CO)_2(n^5-C_5H_5)(SCN)$ .

<u>Halide Compounds</u>. Valence band photoelectron spectra have been obtained⁴⁸⁰ for  $Fe(CO)_2(n^5-C_5H_5)X$  (X = Cl, Br, I or Me) and  $[Fe(CO)(n^5-C_5H_5)]_4$ . The data have been compared with those obtained from  $Fe(n^5-C_5H_5)_2$  and  $Fe(CO)_4$  and interpreted in terms of molecular orbital theory.

<u>Compounds Containing Group II metals</u>. Reaction of  $[Bu_4^{n}N][AuBr_2]$  with  $[Fe(CO)_2 - (n^5-C_5H_5)]^{-}$  gave⁴⁸¹ [{Fe(CO)_2(n^5-C_5H_5)}Au]^, containing a linear Fe-Au-Fe bond system. Comparison of i.r. spectral data obtained from this compound with that obtained from  $[Fe(CO)_2(n^5-C_5H_5)]_2$  Hg established that the Fe-Au bond was weaker than the Fe-Hg interaction.

Treatment of  $[Fe(CO)_2(n^5-C_5H_5)]_2$  with magnesium amalgam in THF, or of  $Fe(CO)_2(n^5-C_5H_5)]$  with Mg powder in the same solvent, afforded⁴⁸²  $[Fe(CO)_2-(n^5-C_5H_5)]_2$ Mg(THF)₂. Reaction of the dicarbonyl dimer with magnesium amalgam in benzene/pyridine mixtures gave the comparable  $[Fe(CO)_2(n^5-C_5H_5)]_2$ Mg(pyr)₂. These compounds were air-sensitive, readily forming MgO and reverting to the dicarbonyl dimer. Conductivity data indicated that they were not ionised in THF, molecular weight studies established that they were not associated in benzene, and i.r. spectral data revealed the absence, in THF or benzene, of the ion  $[Fe(CO)_2(n^5-C_5H_5)]_2$ Mg(THF)₂ + 2THF  $\rightleftharpoons$   $[Fe(CO)_2(n^5-C_5H_5)]_2$ Mg(THF)₄. On treatment with Hg(CN)₂, the Mg(THF)₂, adduct, very rapidly in THF or more slowly in benzene, afforded  $[Fe(CO)_2(n^5-C_5H_5)]_2$ Hg implying that the enhanced nucleophilicity of the

iron compound in polar solvents is due to a changeover from an Fe-Mg bonded system to a solvated ion-pair containing the group Mg-O=C-Fe.

### ARENE METAL COMPLEXES

<u>n⁵-Cyclopentadienyl Iron Compounds</u>. Treatment of  $[Fe(n^6-C_6H_6)(n^5-C_5H_5)][BF_4]$ with LiEt at various temperatures gave⁴⁸³ different products: at 25° in ether  $Fe(n^6-C_6H_6)(n^5-C_5H_5)$  was formed, at 0° in the same solvent  $Fe(n^5-C_5H_5)(n^5-exo-EtC_6H_6)$  was produced, while at 20° in THF, ferrocene was obtained. Reaction of the n⁶-benzene cation with NaC₅H₅ in THF/ether mixtures at 0° afforded  $Fe(n^5-C_5H_5)(n^5-exo-C_5H_5C_6H_6)$ , while PhCH₂MgCl under the same conditions provided  $Fe(n^5-C_5H_5)(n^5-exo-PhCH_2C_6H_6)$ . Treatment of <u>391</u> (R = H) with MeCOCl or PhCOCl and AlCl₃ in nitromethane gave⁴⁸⁴ <u>391</u> (R = Me or Fh).

Protonation of the bis-indenyl complex  $Fe(n^5-C_9H_7)_2$  with HCl or  $CF_3CO_2H$ afforded⁴⁸⁵ <u>392</u>. By judicious deuterium labelling it was confirmed that <u>392</u> is formed by stereospecific addition of  $H^+$  to the indenyl  $C_5$  ring and it was













(394)







(396)





suggested that the most likely site for protonation is *endo*. This may occur vie an intermediate where the proton is attached to the metal. Protonation of  $Fe(n^5-C_5H_5)(n^5-C_9H_7)$  similarly gave  $[Fe(n^5-C_5H_5)(n^6-C_9H_8)]^+$  and reaction of this with LiBuⁿ afforded the starting material, probably by loss of an *exo*-proton.

Naphthalene reacted with  $Fe(n^5-C_5H_5)_2$ , Al and AlCl₃ giving⁴⁸⁶ <u>393</u> and <u>394</u>, also obtained from a-chloronaphthalene at 190°; at lower temperatures the chlorocarbon afforded <u>395</u>. Anthracene, under similar conditions, gave <u>396</u> and <u>397</u>.

The electronic structures of a series of  $n^{6}$ -arene- $n^{5}$ -cyclopentadienyl iron cations has been probed⁴⁸⁷ by a combination of polarographic/voltammetric, electronic and Mässbauer spectral techniques. The compounds investigated include  $[Fe(n^{6}-arene)(n^{5}-c_{5}H_{5})]^{+}$  (arene =  $c_{6}H_{6}$ ,  $c_{6}Me_{6}$ ,  $c_{6}H_{5}$ Cl, diphenyl and naphthalene),  $[Fe_{2}(n^{6}, n^{6}-diphenyl)(n^{5}-c_{5}H_{5})_{2}]^{2+}$ , 398, 399, 400,  $[Fe(n^{6}-c_{6}Me_{6})_{2}]^{2+}$  and  $[Fe(phenylmesitylene)_{2}]^{2+}$  The electronic and Mässbauer spectra of the bimetallic dications were found to be generally similar to those of the corresponding mononuclear cations, and to have d-d electronic transitions analogous to those of ferrocene. Polarographic studies indicated that the differences between the two classes lay in that many of the dications exhibited two iron-based reduction waves in addition to reduction processes associated with the arene molecule. No oxidation waves for the compounds were detected within the limits of the experiments (up to +2.20 V vs. SCE). The two metal-based reduction waves for the dications have been assigned to the processes

Fe^{II}Fe^{II} +e⁻ Fe^{II}Fe^I +e⁻ Fe^IFe^I

In some species, e.g.  $[Fe_2(n^6, n^6-diphenyl)(n^5-C_5H_5)]^{2+}$ , reduction of both metal centres occurred at the same potential. Asymmetric substitution of polyaromatic molecules led to a large separation between the two Fe-based reduction waves. For the system  $[Fe_2(n^6, n^6-arene)(n^5-C_5H_5)]^{2+}$  the following generalisations were made:

(a) for systems with large Fe-Fe separations and weak ring-propagated interaction owing to little conjugation between rings (as in dephenyl, trans-stilbene or p-terphenyl), only a single two-electron reduction wave associated with the process  $Fe^{II} \rightarrow Fe^{I}$  was observed;

(b) for systems having fused aromatic rings (anthracene or chrysene), even with long Fe-Fe distances, two reduction waves, with potential separations of *ca*. 0.15 V, were observed;

(c) even though the Fe-Fe distance might be small, as in <u>398</u> and although the resonance ring interaction might be large, appreciable separation between reduction waves (ca. 0.40 v) could be observed.



(399)

<u>Ruthenium Arene Complexes</u>. Trans-Ru(CO)₄ (GeCl₃)₂ reacted with arenes at 150° or higher giving⁴⁶⁸ Ru(CO)(n⁶-arene)(GeCl₃)₂, <u>401</u>, (arene = benzene, toluene, *o*-, *m*- or *p*-xylene, mesitylene). The formation of <u>401</u> may proceed via the *cis*isomer as suggested by a study of the reactions of benzene with *trans*-Ru(CO)₄-(SiCl₃)₂ which gives Ru(CO)(n⁶-C₆H₆)(SiCl₃)₂. The benzene in Ru(CO)(n⁶-C₆H₆)-(GeCl₃)₂ may be displaced by CO, giving back *trans*-Ru(CO)₄ (GeCl₃)₂, and by mesitylene, providing Ru(CO)(n⁶-C₆H₃Me₃) (GeCl₃)₂. The 'piano-stool' like structure of <u>401</u> (arene = C₆H₆) was confirmed⁴⁸⁹ by X-ray crystallography (Ru-Cre = 2.41Å). Treatment of [Ru(n⁶-C₆H₆)Cl₂]₂ with K[B(C₃H₃N₂)₄] (tetrakis-(pyrazolyl)borate) afforded⁴⁹⁰ [Ru(n⁶-C₆H₆)(B(C₃H₂K₃)₄)]⁺ (isolated as the PF₆ salt) in which the pyrazolylborate ligand was tridentate.

<u>Complexes Containing Heterocyclic Ligends</u>. The bis(1-substituted borabenzene) iron complexes <u>402</u> (R = Me, Bu^t, Fh, Br) were prepared⁴⁹¹ as shown in Scheme <u>75</u>; the compounds so formed are similar to those described⁴⁹² earlier. Mössbauer spectral data indicate that the  $\eta^6$ -1-phenylborabenzene ring withdraws somewhat more electron density from the iron atom than the  $\eta^5$ -cyclopentadienyl ring in ferrocene. Friedel-Crafts acylation (MeCOCl/AlCl₃/CH₂Cl₂) of <u>402</u> (R = Me) afforded <u>403</u>, and the four protons a to the BR group exchange with CF₃CO₂D at 25° (no further exchange occurs after 24 hr). In competition experiments ferrocene reacts with CF₃CO₂D more rapidly than <u>402</u> (R = Me) which undergoes H/D exchange at approximately the same rate as mesitylene.

Reaction of FeCl₂ with tetramethylthiophene in the presence of AlCl₃ and  $PF_6^-$  afforded⁴⁹³ [Fe(n⁵-C₄Me₄S)][PF₆]₂, <u>404</u>. This species could be voltammetrically reduced in two steps, the first of which was a reversible one electron process and the second of which was irreversible and led to decomposition. The half-wave reduction potentials for <u>404</u> were virtually the same as those for [Fe(n⁶-C₆H₃Me₃)₂]²⁺, viz. -0.27 and -1.17 V compared with -0.28 and -1.16 V (vs SCE in 50% aqueous acetone using KCl as supporting electrolyte); the corresponding potentials for [Fe(n⁶-C₆Me₆)₂]²⁺ were more negative, *i.e.* -0.48 and -1.46 V.



# METAL ATOMS INCORPORATED IN BORON CAGES

Reaction of 1,2,3- $(n^5-C_5H_5)CoMe_2C_2B_4H_4$  with Fe(CO)₄ afforded⁴⁹⁴ {(OC)₃Fe}₂- $(n^5-C_5H_5)CoMe_2C_2B_4H_4$ , 405, which is a 9-vertex polyhedral cage. Thermal decomposition of FeH₂(Me₂C₂B₄H₄)₂ gave⁴⁹⁵ Me₄C₄B₈H₈ as a single, air-stable isomer.

Treatment of 4,5-C_B,Ho with sodium in THF, followed by NaC_H₅ and FeClo afforded⁴⁹⁶  $Fe(n^5-C_{5}H_5)(C_{2}B_{6}H_8)$ , two isomers of which are the known, paramagnetic  $Fe_{\rho}(\eta^{5}-C_{5}H_{5})_{\rho}(C_{\rho}B_{6}H_{8})$  ( $\mu = 3.05$  BM at 300 K), and the known⁴⁹⁷  $Fe(\eta^{5}C_{5}H_{5})$ -(C2B8H10). The species Fe2(n5-C5H5)2(C2B6H8) underwent, voltammetrically, oneelectron reduction and one-electron oxidation processes, both of which were reversible. On standing at room temperature,  $Fe_2(\eta^5-C_5H_5)/(C_2B_6H_8)$  became diagragnetic, and the structure of this new species, 406, was determined crystallographically. The 10-vertex species is derived from a bicapped square antiprism.

Reaction of  $[Ru(CO)_{3}Cl_{2}]_{2}$  with  $[7,8-B_{9}C_{2}H_{11}]^{2-}$  gave⁴⁹⁸  $Ru(CO)_{3}(B_{9}C_{2}H_{11})$ , 407 isolated as a benzene solvate. Similar treatment of Ru(CO) (PPh3) Cl afforded Ru(CO)(PPh3)2(BCH11).

Treatment of  $Fe(C_2^{Me_2B_10H_10})_2$  (which contains a *nido* cerborane ligand) with CuCl₂ in THF gave⁴⁹⁹ in 30 min. o-(95%) and m-(5%) C₂Me₂B₁₀H₁₀ with a close configuration. The amount of the m-isomer increased after 100 hr reaction time.



H atoms omitted (405)



H atoms omitted (406)



(407)



(408)



When treated with  $B_{10}H_{13}$ ,  $[Fe(CO)_2(cyclohexene)(\eta^5-C_5H_5)][PF_6]$  afforded⁵⁰⁰  $Fe(CO)_2(\eta^5-C_5H_5)(B_{10}H_{13})$ , <u>408</u>. Reaction of this with bromine gave  $Fe(CO)_2$ -  $(\eta^5-C_5H_4(B_{10}H_{13}))Br$ , while Et₃N caused formation of  $[Fe(CO)_2(\eta^5-C_5H_5)]_2$  and  $[Et_3NH]_2[B_{10}H_{10}]$  (~ 10% yield). Addition of  $[Me_3NH][7,8-B_9H_{10}C_2R_2]$  (R = H or Me) to  $[Fe(CO)_2(cyclohexene)(\eta^5-C_5H_5)]^+$  afforded  $Fe(CO)_2(\eta^5-C_5H_5)(7,8-B_9H_{10}C_2R_2)$ , <u>409</u>, also produced (R = H) by reaction of K  $[Fe(CO)_2(\eta^5-C_5H_5)(7,8-B_9H_{10}C_2R_2)$ , HC1. Treatment of <u>409</u> (R = H) with Me₃N gave  $[Me_3NH][Fe(CO)_2(\eta^5-C_5H_5)(7,8-B_9H_{10}C_2R_2)$ ,  $B_9C_2H_{11}$ )] which, in the presence of acetonitrile, afforded  $[Fe(CO)_2(NCMe)-$ 

References p. 168

 $(n^{5}-c_{5}H_{5})][7,8-B_{9}C_{2}H_{12}]$ . This salt was prepared alternatively by interaction of  $[Fe(CC)_{2}(NCMe)(n^{5}-c_{5}H_{5})][PF_{6}]$  and  $[Me_{3}NH][7,8-B_{9}C_{2}H_{12}]$ . With PPh₃ or  $CSC_{6}H_{11}$  (L),  $[Me_{3}NH][Fe(CO)_{2}(n^{5}-c_{5}H_{5})(7,8-B_{9}C_{2}H_{11})]$  afforded  $[Fe(CO)_{2}L(n^{5}-c_{5}H_{5})]-[B_{9}C_{2}H_{11}]$ .

### COMPOUNDS CONTAINING METAL-CARBON SIGMA BONDS

Treatment of  $Fe(CO)_2(PMe_3)_2I_2$  with LiMe gave⁵⁰¹  $Fe(CO)_2(PMe_3)_2MeI$ . Reduction of this with sodium in THF afforded Na[ $Fe(CO)_2(PMe_3)_2Me$ ] which, on addition of methyl iodide, provided  $Fe(CO)_2(PMe_3)_2Me_2$ , <u>410</u>, and  $Fe(CO)(PMe_3)HI$ , <u>411</u>. These last two compounds were also prepared by treatment of  $Fe(CO)_2^{-}$ ( $PMe_3)_2MeI$  with LiMe.

The structure of the product obtained from the reaction of 1,2-cyclobutadiene iron tricarbonyl and <u>dimethylmaleate</u>, <u>412</u> has been determined⁵⁰² by X-ray crystallography. The iron atom has a distorted octahedral geometry.







Me N HN NH N Me Me







In a reaction between naphtho[b]cyclopropene, <u>413</u>, and  $Fe_2(CO)_9$ , the species <u>414</u> was formed.⁵⁰³ This compound is formally regarded as arising from the addition of an Fe-C bond of Fe(CO)₅ across one edge of the three-membered ring.

Treatment of  $Fe\{o-C_6H_4(NH_2)_2\}_2(NCS)_2$  with  $C_{22}H_{24}N_4$ , <u>415</u>, in the presence of Et₃N and acetonitrile afforded⁵⁰⁴ the paramagnetic  $Fe(C_{22}H_{22}N_4)$  ( $\mu = 3.69$  EM). With CO in toluene, this compound gave  $Fe(CO)(C_{22}H_{22}N_4)$  and addition of pyridine to this carbonyl provided  $Fe(CO)(pyr)(C_{22}H_{22}N_4)$ . Reaction of  $Fe(C_{22}H_{22}N_4)$  with RX (R = Me, Et or PhCH₂) gave  $Fe(C_{22}H_{22}N_4)X$  and  $Fe(C_{22}H_{22}N_4)R$ , which is similar to compounds previously reported.⁵⁰⁵ It was proposed that the reaction of  $Fe(C_{22}H_{22}N_4)$  with RX proceeded in a two-step process, giving X abstraction with release of R.

Lithium methyl or phenyl reacted⁵⁰⁶ with  $[Fe{(tetraene)N_{l_i}}C1]^+$ ({(tetraene)N_{l_i}} = <u>416</u>) giving initially  $Fe{(tetraene)N_{l_i}}C1$  and then  $Fe{(tetraene)N_{l_i}}R$  ( $\mu$  = 2.1 B.M.). These compounds are sensitive to UV light and they were also electrochemically oxidised in two one-electron steps, formally corresponding to the generation of Fe(II) and Fe(III).

Treatment of Fe(acac)₃ with AlEt₃ or AlEt₂(OEt) in the presence of PPh₃ afforded⁵⁰⁷ Fe(PPh₃)₃(acac)Et; the corresponding reaction with AlMe₃ gave Fe(PPh₃)₃Me₂. Related compounds containing PPrⁿ₃ were also prepared.

Lamellar compounds of graphite containing iron were obtained⁵⁰⁸ using FeCl_x (x = 2 or 3), aromatic anion radicals, Na/NH₃ or LiAlH₄. There appeared to be two types of Fe atoms within the layers: a magnetically ordered form (ferromagnetic and superparamagnetic iron) and another paramagnetic form. It was suggested that the iron atoms were weakly complexed by the graphite layers.

Reaction of  $Fe_2(CO)_9$  with 1,2-bis(dimethylsilyl)benzene gave⁵⁰⁹ <u>417</u>. The analogous species <u>418</u> and <u>419</u> were prepared similarly.

### SYNTHETIC AND CATALYTIC REACTIONS

<u>Synthetic Processes</u>. Technical reactions of CO with unsaturated hydrocarbons in the presence of metal carbonyls as catalysts have been selectively discussed.⁵¹⁰ Thus, in the presence of  $\operatorname{Ru}_3(\operatorname{CO})_{12}$ , acetylene and  $\operatorname{CO/H}_2$  or  $\operatorname{CO/H}_2O$  (in appropriate ratios) combine to give hydroquinone. Using  $\operatorname{Fe}(\operatorname{CO})_4$ , p-quinone is produced. Ethylene, CO and H₂O react, in the presence of  $\operatorname{Fe}(\operatorname{CO})_5$  and an organic base, to give propanol, and propene is similarly converted by  $[\operatorname{R_3NH}][\operatorname{Fe}_3(\operatorname{CO})_{11}H]$  into butanol and Me₂CHCH₂OH.

A retro-Diels-Alder reaction occurred when  $K[FeL_2(H_20)]$  ( $H_2L$  = bicyclo-2.2.1 hept-5-en-*endo*-2,3-cis-dicerboxylic acid) was heated.⁵¹¹ Sequential loss of two molecules of cyclopentadiene occurred and the final metalcontaining species was  $K[FeQ_2]$  ( $H_2Q$  = maleic acid).

The formation of ethyl ketones vie sequential insertion reactions of alkyl

In the reaction involving CH₃CO₂D, no deuterium is incorporated in the ethyl ketone and hence  $H^{+}(D^{+})$  is not derived from an added source. However, reaction of  $Na_2Fe(\Omega)_{l_1}$  with  $C_0H_{10}Br$  in the presence of  $C_2D_{l_1}$  and HOAc gave 3-dodecanone with greater than 92% deuteration  $(d_3)$  at C(1). The reaction appears to involve base-catalysed removal of exchangeable a-methylene D atoms in  $[Fe(CO)_3(C_2D_h) (CD_{CD_{C}CD_{C}CD_{C}CD_{C}})$ , or to involve H/D exchange with enother molecule of  $C_{D_{L}}$ . A feasible process could involve oxidative addition of coordinated C_pD_h in Fe(CO)₃(C₂D_h)(CD₂CD₂COR), giving <u>420</u> which would then undergo reductive elimination of the appropriate ketone. Treatment of  $Na_2Fe(CO)_{4}$  with n-nonyl bromide and CD,=CH, gave, after removal of exchangeable deuterium, 3-dodecenone with deuteration at C(1) (12%  $d_0$ , 48%  $d_1$ , 38%  $d_2$  and 1%  $d_3$ ). In the absence of a large secondary isotope effect, comparable amounts of [Fe(CO)₃(C₂H₂D₂)(CH₂CD₂-COR) and  $[Fe(CO)_3(C_2H_2D_2)(CD_2CH_2COR)]^-$  should be formed. The overall data are consistent with intermediates such as  $\frac{421}{2}$  and  $\frac{422}{2}$ , and the net uptake of two moles of ethylene without evolution of CO appears to favour 421. This process does not appear to be useful for higher alkenes. Thus, propene reacted with Na₂Fe(CO)₁, and n-pentyl bromide giving hexanal (70%) and 4-nonanone (10-15%) whereas hexene produced hexanal (94%). Acylation of  $\beta$ -oxoalkyltetracarbonylferrate species affords⁵¹³ a new route to enol esters, viz.

 $[Fe(CO)_{L}(CH_{2}COR)]^{-}$  + R'COX --> RC(OCOR'):CH₂

Here R = Me br Ph and R' = alkyl or aryl; it was noted that  $RCOCH_2COR'$  was not formed.

Rearrangement of  $CH_2:C(Me)CH_2OH$  to  $Me_2CHCHO$  was achieved⁵¹⁴ using RuCl₃.3H₂O. Hetereocumulenes reacted⁵¹⁵ with phenylbromoacetylenes in the presence of THF giving <u>423</u> and (PhC=C-)₂ according to the mechanism outlined in Scheme <u>76</u>

A similar reaction involving PhN:C:O afforded two hydentoin derivatives, <u>424</u> and <u>425</u>, according to the mechanism proposed in Scheme <u>77</u>. With Ph₂C:C:O, <u>426</u> was formed. Conversion of amide oximes RX(X):NOH into amidines RC(X):NH  $(X = NHPh, R = Ph; 2,4,6-C_6H_2Me_3; p-C_6H_4NO_2; R = Ph, X = p-ClC_6H_4NH, NMePh or$  $IMe_2) was effected⁵¹⁶ using Fe(CO)₅.$ 



Hydrogenation and Dehydrogenation. A series of styrene-divinylbenzene resins were converted into a poly(diphenylphosphine) species and complexed⁵¹⁷ via phosphine exchange by  $Ru(CO)_2(PPh_3)_2Cl_2$ . This polymer-supported catalyst system selectively hydrogenated 4-vinyl-cyclohexene to ethylcyclohexene, cycloocta-1,5diene to (Z)-cyclooctene and *trans, trans, trans-*cyclododecatriene to (E)-cyclododecaene. The reactions were carried out in the presence of a large excess of PPh₃ and could not be achieved by an excess of polymer-bound PPh₂ groups alone.



The polymeric catalyst was a slower hydrogenating reagent than the comparable homogeneous species, in accordance with the diffusion retardation of the rate using the polymer-bound catalyst.

In methanol and p-toluenesulphonic acid, the rate of hydrogenation of monoand di-alkenes by  $\operatorname{Ru}(\operatorname{PPh}_3)_3(\operatorname{OAc})_2$  was highly dependent on acidity.⁵¹⁸ A rapid and highly selective reduction of cyclic dienes to the corresponding mono-enes occurred, and this was attributed principally to the superior coordinating abilities of dienes in comparison to mono-alkenes.

The species  $\operatorname{Ru}(\operatorname{CO})(\operatorname{PPh}_3)_2(\operatorname{OCOCF}_3)_2$  is an effective homogeneous catalyst for the dehydrogenation⁵¹⁹ by primary and secondary alcohols to aldehydes and ketones (Scheme <u>78</u>). The catalytic reactions can be performed in neat boiling alcohol and, up to a certain concentration,  $\operatorname{CF}_3\operatorname{CO}_2\operatorname{H}$  acts as a promoter; beyond this concentration inhibition occurs. The alcohols successfully dehydrogenated included RCH₂OH (R = Me, Et,  $\operatorname{Pr}^n$ ,  $\operatorname{Bu}^n$ ,  $\operatorname{C}_5\operatorname{H}_{11}$ , Ph), Me₂CHOH and cyclohexanol;



methanol and tertiary alcohols were inert but allyl alcohol was converted to acrolein while propargyl alcohol decomposed and deactivated the catalyst.

<u>Isomerisation and H/D Exchange</u>. Characteristic maxima have been observed in the deuterium distribution patterns of the isomers obtained⁵²⁰ from various  $\beta$ -olefins and iron films in the presence of CD₃CD:CD₂. The results were interpreted by assuming interconversions between vinyl and allene surface complexes (Scheme <u>79</u>).

The intermediates proposed also permit H/D exchange. On iron films H/D exchange of but-1-ene proceeds⁵²¹ via a dissociative adsorption involving the vinylic group: the most reactive H atom towards exchange is that bound to the ethyl-substituted C atom.

Oligomerisation and Polymerisation. The reaction of iodoalkanes with ethylene to produce higher molecular weight 1-iodoalkanes is promoted⁵²² by  $Ru(CO)_3^-$  (PPh₃)₂. With the exception of benzylbromide, organic chlorides and bromides did not react, the species  $Ru(CO)_3L_2$  (L = PR₃, R = Buⁿ,  $C_6H_{11}$ , p-MeC₆H₄; Ph₂PCH₂CH₂PPh₂; pyr; Ph₃As),  $Ru(CO)_4$ (PPh₃) and  $Ru(NCMe)_2$ (PPh₃)₄ were effective



catalysts, but Ru(acac)₃, RuCl₃.3H₂O, Ru(CO)₂(PPh₃)₂Cl₂ or Ru(CO)₂(PPh₃)₂I₂ were inactive. Ethyliodide and ethylene were converted by Ru(CO)2(PPh3)2 to  $C_{4}H_{9}I$  (25%),  $C_{6}H_{14}I$  (33%),  $C_{8}H_{17}I$  (20%),  $C_{10}H_{24}I$  (14%) and  $C_{12}H_{25}I$  (8%) while  $\begin{aligned} & \operatorname{Ru}(\operatorname{CO})_{1}^{4} \operatorname{F}(\underline{p}-\operatorname{MeC}_{6}^{4}\operatorname{H}_{4})_{3}^{4} \operatorname{gave} C_{4}^{4}\operatorname{H}_{9}^{-1} (25\%), C_{6}^{4}\operatorname{H}_{13}^{-1} (30\%), C_{8}^{4}\operatorname{H}_{17}^{-1} (20\%), C_{10}^{4}\operatorname{H}_{21}^{-1} \\ & (11\%), C_{12}^{4}\operatorname{H}_{25}^{-1} (4\%), C_{14}^{4}\operatorname{H}_{29}^{-1} (2\%) \text{ and } C_{16}^{4}\operatorname{H}_{33}^{-1} (2\%). \end{aligned}$  In the reaction, Ru(CO)₃-(PPh₃)₂ was converted to Ru(CO)₂(PPh₃)₂I₂ and, using EtI, the intermediate Ru(CO) (PPh3) (Et)I may be formed in the absence of ethylene (when C₂H₄ was present higher alkyl complexes may have been present). The overall mechanism, shown below, involves a radical chain process:

 $\operatorname{RuL}_{5} + \operatorname{RI} \longrightarrow \operatorname{RI}_{5} \longrightarrow \operatorname{RI}_{4} + \operatorname{L}_{4}$  $RI....RuL_{l_1} \longrightarrow R \cdot + RuL_{l_1}I$  $\operatorname{RI}_{5} \longrightarrow \operatorname{R}^{*} + \operatorname{RuL}_{4} \operatorname{I} + \operatorname{CO}_{4}$  $R^{+} + nCH_2: CH_2 \longrightarrow R(CH_2CH_2)_n^{+}$  $R(CH_2CH_2)_n^* + RI \longrightarrow R(CH_2CH_2)_n^I + R^*$  $RI....RuL_h + RI \longrightarrow RuL_h I_2 + R^*$  $2R^{\bullet} \longrightarrow R-R + RH + R(-H)$ (possible chain termination)

Support for the species Ru(CO)2(PPh3)2RI as precursors for the formation of radicals came from comparison of the reactivity of Ru(CO)(PMe_Ph)3HI and Ru(CO), (PPh2), HI which, under ethylene when ruthenium-ethyl complexes can be formed, behaved catalytically in the same way as Ru(CO)₂(PPh₃)₂.

Catalytic oligomerisation of butadiene has been achieved⁵²³ by catalysts derived from metal atoms. The technique involved cocondensation of Fe vapour, with or without aluminium, and other carbon compounds at 77°K followed by warming, and the results are summarised in Table 6.

Catalyst System and Reagents	Conversion of C ₄ H ₆ (%)	Conditions	Products
Fe + AlEt ₂ Cl benzene or toluene	100	20°C/1 hr.	immediately after warming 20% $C_{4}H_{6}$ + linear and cyclic dimers and trimers; otherwise polybuta- diene (100%)
Fe + AlEt ₃ benzene or toluene	100	20°C/l hr.	immediately after warming linear trimers and dimers ( 10%) otherwise polybutadiene (100%)
Fe + Al + EtCl, benzene	90	20°C/6 hr.	immediately after warming, ttt-cyclododecatriene (10%) ctt-cyclododecatriene (15%) butenylbenzene (75%); otherwise polybutadiene (100%)
Fe + Al, $C_6 Cl_6$	15	werming to room temp.	c,t,t-cyclododecatriene (25%) linear trimers (65%), butenyl benzenes (10%)
Fe + Al, benzene	20	warming to room temp.	c,t,t-cyclododecatriene (18%), dodecatriene (60%), cyclooctadiene (22%)
	140	55°C/4 hr.	c,t,t-cyclododecatriene (30%), dodecatriene (63%), cyclooctadiene (7%)
Fe + PPh ₃ , toluene or benzene	37	50°C/5 hr.	linear dimers (100%)
Fe + P(OPh) ₃ , toluene or benzene	0		
Fe + P ₄ , benzene or toluene	10	50°C/4 hr.	t,t,t-cyclododecatriene (100%)
Fe/benzene	90	50°C/2 hr.	c,t,t-cyclododecatriene (30%), linear trimers (63%) cyclooctadiene (7%)
'FeO', benzene	0	. •	

Table 6 Oligomerisation of butaliene by Fe atoms

Cyclooligomerisation of butadiene followed by selective hydrogenation was achieved⁵²⁴ using polymer supported catalysts containing from Ni(CO)₂ and Ru(CO)₂Cl₂ derived by phosphine exchange of polymeric resins containing PPh₂ groups with Ni(CO)₂(PFh₃)₂ and Ru(CO)₂(PPh₃)₂Cl₂).

# REVIEWS AND DISSERTATION ABSTRACTS

Reviews. The following reviews have appeared which contain material of relevance to iron, ruthenium and osmium organometallic chemistry: "The Chemistry of Metal Carbonyls: The Lifework of Walter Hieber" by H. Behrens. 525 "Transition Metal Carbonyls", by R. A. Sokolik.526 "Transition Metal Carbonyl, Organometallic and Related Complexes", by R. J. Cross. 527, 528 "The Reactivity Patterns of Metal Carbonyl Anions and their Derivatives", by J. E. Ellis 529 "Na Fe(CO), : a Transition Metal Analogue of a Grignard Reagent", by J. P. Collman.530 "S Atoms as Ligands in Iron Carbonyls and Related Clusters", by H. Vahrenkamp 531 "Isocyanide Complexes of Transition Metals", by L. P. Yur'eva. 532 "Synthetic Methods in Transition Metal Nitrosyl Chemistry", by K. G. Caulton.533 "Coordination Chemistry of NO", by R. Eisenberg and C. D. Meyer.534 "Coordination Chemistry of Aryldiazonium Cations. Aryldiazenato (arylazo) Complexes of Transition Metals and the Aryldiazenato-Nitrosyl Analogy", by D. Sutton.535 "Trensition Metal Chemistry of Azo Compounds", by M. I. Bruce and B. L. Goodall 536 "z-Complexes of Mono-olefins", by M. I. Rybinskaya.537 "Cyclobutadiene Complexes of Metals", by L. V. Rybin.538 "Polyolefin Carbonyl Derivatives of Iron, Ruthenium and Osmium", by G. Deganello and others,539 "Acetylene-w-Complexes of Transition Metals", by L. P. Yur'eva.540 "Mono-π-cyclopentadienyl Compounds of Transition Metals", by T. V. Nikitina.541 "Arene Transition Metal Chemistry", by W. E. Silverthorn.542 "Alkyl Derivatives of Metals and Related Compounds", by I. I. Kritskaya.543 "Organometallic Chemistry: A Historical Perspective", by J. S. Thayer.544 Perspectives in Organometallic Chemistry, the 100th volume of the Journal of Organometallic Chemistry, including the following articles: "Reactions of Dinitrogen in its Mononuclear Complexes", by J. Chatt:545 (a)"Fluxionality in Organometallics and Metal Carbonyls", by F. A. Cotton;546 (ъ) (c) "Perspectives in Metallocarborane Chemistry", by M. F. Hawthorne;547 (a) "Perspectives in the Syntheses of Novel Organometallic Compounds using Metal Carbonyl Anions", by R. B. King⁵⁴⁸ "The Coordination Chemistry of Bivalent Group IV Donors: Nucleophilic (e)

Carbene and Dialkylstannylene Complexes", by M. F. Lappert⁵⁴⁹

(f) "The Role of Cyclobutadiene Iron Tricarbonyl in the 'Cyclobutadiene' Problem", by R. Pettit⁵⁵⁰

- (g) "Synthetic Applications of d¹⁰ Metal Complexes", by F. G. A. Stone.⁵⁵¹
- (h) "The Iron Sandwich. A recollection of the first four months", by G. Wilkinson.⁵⁵²

"Organometallic Chemistry. I. Transition Elements", by J. D. Jones and others.⁵⁵³ "Organometallic Complexes containing Bonds between Transition Metals and

Group IIIB Metals", by A. T. T. Hsieh. 554

- "Oxidation Reduction of Metal-Metal Bonds", by T. J. Meyer. 555
- Organo Iron Compounds in Gmelin Handbook of Inorganic Chemistry. 556
- "RuCl, and its Applications", by W. P. Griffith.557

"Oxidative Addition Reactions and their Industrial Implications", by G. Dolcetti and others.⁵⁵⁸

- "The Chemistry of Fe, Co and Ni", "The Chemistry of Ru, Rh, Pd, Os, Ir and Pt" and "Compounds of Transition Elements Involving Metal-Metal Bonds", by D. Nicholls,⁵⁵⁹ S. E. Livingstone,⁵⁶⁰ and D. L. Kepert and K. Vrieze,⁵⁶¹ respectively.
- "Metal Vapours as Reagents", by K. J. Klabunde and T. O. Murdock. 562
- "Synthesis Reactions with Metal Atoms from 10 to 273°K", by P. L. Timms.⁵⁶³

"The Flipping of CO Ligand Groups in Metal Carbonyl Compounds and its Frequency in Fe(CO)₅", by R. K. Sheline and K. Mahnke.⁵⁶⁴

- "Reactions of Transition Metal Atoms with Organic Substrates", by P. S. Skell and M. J. McGlinchey.⁵⁶⁵
- "The Laser-Evaporation of Metals and its Applications to Organometallic Syntheses", by E. A. Koerner von Gustorf and others.⁵⁶⁶

"Photochemistry in Matrices and its Relevance to Atom Syntheses", by J. J. Turner.⁵⁶⁷

#### Dissertation Abstracts

"Structural Studies of Organometallic Compounds of Iron", by K. -K. Lin.⁵⁶⁸
"Organometallic Chemistry of Iron", by A. J. Schultz.⁵⁶⁹
"Disodium Tetracarbonylferrate", by R. G. Komoto.⁵⁷⁰
"Reaction of Fe(CO)₅ with NaOMe", by J. L. McClean.⁵⁷¹
"Complexes of NO. Synthesis, Structure, and Reactivity", by J. Reed.⁵⁷²
"Structural Studies of Bonding of NO in Transition Metal Complexes", by D. G. Van Dervier.⁵⁷³
"Reactivity of Ruthenium Nitrosyls", by R. P. Cheney.⁵⁷⁴
"Interaction of Transition Metals with Olefins", by R. S. Case.⁵⁷⁵
"Studies of Fe(O) Cyclooctatetraene Complexes", by M. T. Mocella.⁵⁷⁶
"Cycloaddition Reactions involving Fe(CO)₃ Complexes", by T. J. Devon.⁵⁷⁷
"Synthesis and Chemistry of Fe(CO)₃ Complexes of Push-Pull and Highly Hindered Cyclobutadienes", by G. Berens.⁵⁷⁸ "Synthesis and Spectroscopic Studies of Group VB Derivatives of Cyclopentadienyl Iron Dicarbonyl Dimer, and Related Tin Insertion Reactions", by T. N. Decoraro.⁵⁷⁹ "Alkyl Anion Fe(CO)₃ Chemistry", by R. L. Parton.⁵⁸⁰

"Borabenzene Anions and Their Iron(II) Complexes", by P. Shu.⁵⁸¹

## References

1.	C.J.Fickett and D.Pletcher, J.C.S.Dalton, (1975) 879
2.	J.A.Connor, J.Organometal.Chem., 94 (1975) 195
3.	R. Davis, J. Organometal. Chem., 85 (1975) 209
4.	M.S.Foster and J.L.Beauchamp, J.Amer.Chem.Soc., 97 (1975) 4808
5•	R.C.Dunbar, J.F.Ennever and J.P.Fackler, Inorg.Chem., 12 (1973) 2734
6.	W.Groth, U.Schurath and K.Weber, Z.Phys.Chem., (Frankfurt am Main),
•	93 (1974) 159
7.	H.G. Riedermann and W.Graf, Chem. Zeitung, 99 (1975) 245
8.	H.G.Biedermann and W.Graf, Z.Naturforsch., 30B (1975) 226
9•	H. tom Dieck and A.Orlopp, Angew.Chem., 97 (1975) 246
10.	J.D.Black and F.S.Braterman, J.Organometal.Chem., 85 (1975) 07
11.	W.O.Siegl, J.Organometal.Chem., 92 (1975) 321
12.	M.Bigorgne, J.Organometal.Chem., 94 (1975) 161
13.	H.Schumann, L.Roesch, H.J.Kroth, H.Neumann and B.Neudert, Chem.Ber.,
	108 (1975) 2487
14.	J.C.Kotz, C.L.Nivert, J.M.Lieber and R.C.Reed, J.Organometal.Chem.,
	84 (1975) 255
15.	M.L.Walker and J.L.Mills, Inorg.Chem., 14 (1975) 2438
16.	G.R.Langford, A.Akhtar, P.D.Ellis, A.G.Macdiarmid and J.D.Odom,
	Inorg. Chem., 14 (1975) 2937
17.	D.S.Brown and G.W.Bushnell, Acta Cryst., 22B (1967) 296
18.	B.V.Loshkin, E.B.Rusach, Z.P.Valueva, A.G.Ginzburg and N.E.Kolobova,
	J.Organometal.Chem., 102 (1975) 535
19.	W-Malisch and P.Panster, Chem.Ber., 108 (1975) 716
20.	S. Cenini, A. Mantovani, A. Fusi and M. Keubler, Gazz. Chim. Ital., 105 (1975) 255

- 21. B.F.G.Johnson, J.Lewis and M.V.Twigg, J.C.S.Dalton, (1975) 1876
- 22. W.O.Siegl and J.P.Collman, J.Amer.Chem.Soc., 94 (1972) 2516
- 23. G.Huttner and W.Gartzke, Chem.Ber., 108 (1975) 1373
- 24. S.E.Pedersen and W.R.Robinson, Inorg. Chem., 14 (1975) 3265
- 25. J.Allison and D.P.Ridge, J.Organometal.Chem., 99 (1975) Cll
- W.Petz, J.Organometal.Chem., 90 (1975) 223; J.Schmetzer, J.Daub and:
   P.Fischer, Angew.Chem., 87 (1975) 489
- R.G.Pettersen, J.L.Cihonski, F.R.Young III, and R.A.Levenson, J.C.S.
   Chem. Comm., (1975) 370
- 28. H.W.Sternberg, R.Markby and I.Wender, J.Amer.Chem.Soc., 80 (1958) 1009
- 29. C.W.Fong and G.Wilkinson, J.C.S.Dalton, (1975) 1100
- 30. W.Petz, Angew.Chem., 87 (1975) 288
- 31. M. Green, F. G. A. Stone and M. Underhill, J. C. S. Dalton, (1975) 939
- 32. G.C. van den Berg and A.Oskam, J.Organometal.Chem., 91 (1975) 1
- E.E.Isaacs and W.A.G.Graham, J.Organometal.Chem., 85 (1975) 237
- 34. D.H.Harris, M.F.Lappert, J.S.Poland and W.McFarlane, J.C.S.Dalton, (1975) 311
- 35. J.M.Burlitch and R.C.Winterton, J.Amer.Chem.Soc., 97 (1975) 5605
- 36. C.J.Weschler, D.L.Anderson and F.Basolo, J.Amer.Chem.Soc., 97 (1975) 6707
- O.Leal, D.J.Anderson, R.G.Bowman, F.Basolo and R.L.Burwell,
   J.Amer.Chem.Soc., 97 (1975) 5125
- 38. G.M.Brown, F.R.Hopf, T.J.Meyer and D.G.Whitten, J.Amer.Chem.Soc., 97 (1975) 5385
- 39. G.M.Brown, F.R.Hopf, J.A.Ferguson, T.J.Meyer and D.G.Whitten, J.Amer.Chem.Soc., 95 (1973) 5939
- 40. G.R.Eaton and S.S.Eaton, J.Amer.Chem.Soc., 97 (1975) 235
- D.V.Stynes, H.C.Stynes, B.R.James and J.A.Ibers, J.Amer.Chem.Soc., 95 (1973) 4087
- F.R.Hopf, T.P.O'Brien, W.R.Scheidt and D.G.Whitten, J.Amer.Chem.Soc.,
   97 (1975) 277

- 170 J.P. Collman, R.R. Gagne, C.A. Reed, T.R. Halbert, G.Lang and W.T. Robinson, 43. J.Amer. Chem. Soc., 97 (1975) 1427 44. J.H.Wang, A.Nakahara and E.B.Fleischer, J.Amer.Chem.Soc., 80 (1958) 1109; J.O.Alben and W.S.Caughey, Biochemistry, 7 (1968) 175 45. J.Geibel, C.K. Chang and T.G. Traylor, J.Amer. Chem. Soc., 97 (1975) 5924 46. J.P. Collman and T.N. Sorrell, J. Amer. Chem. Soc., 97 (1975) 4133 47. S.D.Robinson and A.Sahajpal, J.Organometal. Chem., 99 (1975) C65 48. I.S.Kolomnikov, T.S.Belopotapova and M.E.Vol'oin, Zh.Obshch.Khim., 45 (1975) 1993; S.Komiya and A.Yamamoto, Chem. Abs., 82 (1975) 67596 49. Y.Inoue, Y.Sasaki and H.Hashimoto, J.C.S.Chem.Comm., (1975) 718 50. P.B. Critchlow and S.D. Robinson, J.C.S. Dalton, (1975) 1367 J.S.Killer, Inorg. Chem., 14 (1975) 2011 51. E.F.Epstein and I.Bernal, in R.Eisenberg, Progr. Inorg. Chem., 12 (1970) 295; 52. J.Miller and A.L.Balch, Inorg.Chem., 10 (1971) 1410 R.B.King and M.B.Bisnette, Inorg.Chem., 6 (1967) 469 53. G.F.Bradley and S.R.Stobart, J.C.S.Chem.Comm., (1975) 325 54. R.A. Levenson, J.L. Cihonski, P. Milazzo and G.P. Ceasar, Inorg. Chem., 55. 14 (1975) 2578 56. C.J.Pickett and D.Pletcher, J.Organometal.Chem., 102 (1975) 327 57. W.Preetz and F.H.Johannsen, J.Organometal.Chem., 86 (1975) 397 58, F.H.Johannsen, W.Preetz and A.Scheffler, J.Organometal. Chem., 102 (1975) 527 K.R.Grundy, R.O.Harris and W.R.Roper, J.Organometal.Chem., 90 (1975) C34 59. 60. E-E-Cavit, K.R.Grundy and W-R.Roper, J.C.S.Chen.Comm., (1972) 60 61. G.R.Clark, K.R.Grundy, R.O.Harris, S.M.James and W.R.Roper, J.Organometal.Chem., 90 (1975) C37 62. S. Cenini, M. Pizzotti, F. Porta and G. La Monica, J. Organometal. Chem., 88 (1975) 237 A. Dobson, S. D. Robinson and M. F. Uttley, J. C.S. Dalton, (1975) 370 63. 64 -A.Y.Girgis, Y.S.Sohn and A.L.Balch, Inorg. Chem., 14 (1975) 2327 65. S.S.Sandhu and A.K.Mehta, Indian J.Chem., 13 (1975) 733 66. M.A.Bennett, R.N.Johnson and I.B.Tomkins, Inorg. Chem., 14 (1975) 1908
- 67. K.R. Grundy and W.R. Roper, J. Organometal. Chem., 91 (1975) 061

- 68. J.Chatt, C.M.Elson, N.E.Hooper and G.J.Leigh, J.C.S.Delton, (1975) 2392
- D. G. Holah, A. N. Hughes, B. Hui, N. Krupa and K. Wright, Phosphorus 5 (1975)
   145; Chem. Abs., 83 (1975) 114563
- 70. C.Ungurenasu and M.Palie, J.C.S.Chem.Comm., (1975) 388
- 71. B.I.Swanson, J.J.Rafalko, D.F.Shriver, J.San Filippo, Jr., and T.G.Spiro, Inorg. Chem., 14 (1975) 1737
- 72. F.W. Grevels and E.Koerner von Gustorf, Liebigs Ann., (1975) 547
- 73. F.W.Grevels, D.Schulz, E.Koerner von Gustorf and D.St.P.Bunbury, J.Organometal.Chem., 91 (1975) 341
- 74. A.Zimniak and W.Jasiobedzki, Bull.Acad.Pol.Sci., Ser.Sci.Chim., 23 (1979) 107; Chem.Abs., 83 (1975) 131726
- 75. P.E.Riley and R.E.Davis, Acta Cryst., 31B (1975) 2928
- 76. M.I.Bruce and T.A.Kuc, Austral.J.Chem., 27 (1974) 2487
- 77. J.P.Hickey, J.R.Wilkinson and L.J.Todd, J.Oerganometal. Chem., 99 (1975) 281
- J.Piron, P.Piret, J.Meunier-Piret and M.van Meersche, Bull.Soc.Chim.Belges,
   78 (1969) 121
- 79. R.P. Dodge and V. Shomaker, J. Organometal. Chem., 3 (1965) 274
- 80. F.A.Cotton, J.D.Jamerson and B.R.Stults, J.Organometal.Chem., 94 (1975) C53
- W.Hübel, in I.Wender and P.Pino (Eds.), Organic Syntheses via Metal Carbonyls, Interscience-Wiley, vol.1 (1968) 273
- 82. K.Nicholas, L.S.Bray, R.E.Davis and R.Pettit, Chem. Comm., (1971) 608
- 83. H.-J.Schmitt and M.L.Ziegler, Z.Naturforsch, 28B (1973) 508
- 84. J.L.Calderon, S.Fontana, E.Frauendorfer, V.W.Day and S.D.A.Iske, J.Organometal.Chem., 64 (1974) Cl6
- N.J.Teylor, H.N.Paik, P.C.Chieh and A.J.Carty, J.Oerganometal.Chem., 97 (1975)
   C31
- 86. K.Yesufuku and H.Yemazaki, Bull.Chem.Soc.Japan, 45 (1972) 2664
- 87. K.Yasufuku, K. Aoki and H.Yemezaki, J.Organometal. Chem., 84 (1975) C28
- 88. Y.S. Wong, H.N. Faik, P.C. Chieh and A.J. Carty, J.C.S. Chem. Comm., (1975) 309
- E.O.Fischer, E.Winkler, G.Huttner and D.Regler, Angew.Chem.Int.Edit.Engl.,
   11 (1972) 238
- 90. P.F.Lindley and O.S.Mills, J.Chem.Soc., A (1969) 1279

- 91. F.A.Cotton, D.L.Hunter and P.Lahuerta, J.Amer. Chem. Soc., 97 (1975) 1046
  92. R.B.King, Inorg. Chem., 2 (1963) 807
- 93. F.A. Cotton and W.T.Edwards, J.Amer. Chem. Soc., 91 (1969) 843
- 94. F.A.Cotton and D.L.Hunter, J.Amer. Chem. Soc., 97 (1975) 5739
- 95. J.Takats, J.Organometal.Chem., 90 (1975) 211
- 96. R. Goddard, A.P. Eurphries, S.A.R. Knox and P. Woodward, J.C.S. Chem. Comm., (1975) 508
- 97. F.A. Cotton and W.T. Edwards, J. Amer. Chem. Soc., 90 (1968) 5412
- 98. A.C.Szary, S.A.R.Knox and F.G.A.Stone, J.C.S.Dalton, (1974) 662
- 99, G.Deganello, P.L.Sandrini, R.A.Michelin and L.Toniolo, J.Organcmetal.Chem., 90 (1975) C31
- 100. F.A. Cotton and J.M. Troup, J. Organometal. Chem., 77 (1974) 369
- 101. J.B. Davison and J.M. Belleme, Inorg. Chim. Acta, 14 (1975) 263
- 102. A.Brookes, J.Howard, S.A.R.Knox, V.Riera, F.G.A.Stone and P.Woodward, J.C.S.Chem.Comm., (1973) 727
- 103. J.Howard and P.Woodward, J.C.S.Dalton, (1975) 59
- 104. R.Bau, J.C.Burt, S.A.R.Knox, R.M.Laine, R.F.Phillips and F.G.A.Stone, J.C.S.Chem.Comm., (1973) 726
- 105. J.D.Edwards, R.Goddard, S.A.R.Knox, R.J.NcKinney, F.G.A.Stone and P.Woodward, J.C.S.Chem.Comm., (1975) 828
- 106. P.R.Bennett, USP 3869453, Chem.Abs., 83 (1975) 59053
  - 107. W.Beck and W.Danzer, Z.Naturforsch, 30B (1975) 716
  - 108. A.Albini and H.Kisch, J.Organometal.Chem., 94 (1975) 75, and 101 (1975) 231
  - 109. C.Kruger and H.Kisch, J.C.S.Chem.Comm., (1975) 65
  - 110. E.A.Patel, A.J.Carty, M.Mathew and G.J.Palenik, J.C.S.Chem.Comm., (1972) 810
  - 111. A.Mayr, W.Ehrl and H. Vahrenkamp, Chem. Ber., 107 (1974) 3860
- 112. R.D.Adams, F.A.Cotton, W.R.Cullen, D.L.Hunter and L.Mihichuk, Icorg.Chem., 14 (1975) 1395
- 113. M.M. Taqui Khan and A.E. Martell, Inorg. Chem., 14 (1975) 676
- 114. P.A. Wegner, L.F. Evans and J. Haddock, Inorg. Chem., 14 (1975) 192
- 115. L.S.Chia, W.R.Cullen, J.R.Sams and J.C.Scott, Can.J.Chem., 53 (1975) 2232

- 116. N.S.Nametkin, V.D.Tyurin, S.P.Gubin and M.A.Kukina, Nefte Khimiya, 15 (1975) 767; Chem.Abs., 84 (1976) 767
- 117. M.A.Kukina, Ya.I.Lys, V.D.Tyurin, V.M.Fedoseev and N.S.Nametkin, Izv. Akad.Nauk SSSR, Ser.Khim., (1975) 2383
- 118. G.Bor, J.Organometal.Chem., 94 (1975) 181
- 119. B.K.Teo, M.B.Hall, R.F.Fenske and L.F.Dahl, Inorg. Chem., 14 (1975) 3103
- 120. M. Easata, J. G. S. Dalton, (1975) 911
- 121. P.C.Ellgen and J.N.Gerlach, Inorg. Chem., 12 (1973) 2526
- 122. H.Alper, J.Organometal.Chem., 84 (1975) 347
- 123. H.Alper and W.G.Root, J.Amer.Chem.Soc., 97 (1975) 4251
- 124. H.Alper and C.K.Foo, Inorg.Chem., 14 (1975) 2928

125.

- 126. R.Poilblanc, J.Organometal. Chem., 94 (1975) 241
- 127. C.J.Jones and J.A.McCleverty, J.C.S.Dalton, (1975) 701
- C.J.Jones, D.G.Orchard and J.A.McCleverty, J.Organometal.Chem.,
   26 (1971) Cl9
- 129. A.J.Schultz and R.Eisenberg, Inorg. Chem., 12 (1973) 518
- 130. H.Noth and U.Schuchardt, Z.Anorg.Allgem.Chem., 418 (1975) 97
- 131. J.V.Kingston and G.Wilkinson, J.Inorg.Nucl.Chem., 28 (1966) 2709
- 132. C.L.Raston and A.H.White, J.C.S.Dalton, (1975) 2418
- 133. K. Triplett and M. D. Curtis, Inorg. Chem., 14 (1975) 2284
- 134. E.H.Brooks, M.Elder, W.A.G.Graham and D.Hall, J.Amer.Chem.Soc., 90 (1968) 3587
- 135. F.A. Cotton and T.R. Webb, Inorg. Chim. Acta, 10 (1974) 127
- 136. A.B. Cornwell and P.G.Harrison, J.C.S.Dalton (1975) 2017
- 137. T.J.Marks and G.W.Grynkewich, J.Organometal.Chem., 91 (1975) 09
- 138. P.G.Harrison, T.J.King and J.A.Richards, J.C.S. Dalton, (1975) 2097
- 139. J.A.K.Howard, S.C.Kellett and P.Woodward, J.C.S.Dalton, (1975) 2332
- 140. S.Grant, J.Newman and A.R.Manning, J.Organometal.Chem., 96 (1975) Cll
- 141. D.V.Korol'kov, Zh.Strukt.Khim., 16 (1975) 160
- J.R.Shapley, J.B.Keister, M.R.Churchill and B.G.deBoer, J.Amer.Chem.Soc,
  97 (1975) 4145; A.J.Deeming and S.Harro, J.Organometal.Chem., 88 (1975) 21
- 143. D.F.Shriver, D.Lehman and D.Strope, J.Amer.Chem.Soc., 97 (1975) 1594

- 144. N.R.Churchill, B.G.deBoer, F.J.Rotella, E.W.Abel and R.J.Rowley, J.Amer.Chem.Soc., 97 (1975) 7158
- 145. I. Hee, N. Ryang and S. Tsutsumi, Chem. Comm., (1968) 455

- 146. R. Greatrex, N.N. Greenwood, I. Hhee, M. Ryeng and S. Tsutsumi, Chem. Comm., (1970) 1193
- 147. G.M. Sheldrick and J.P.Yesinowski, J.C.S.Dalton, (1975) 873
- 148. A.D.Buckingham, J.P.Yesinowski, A.J.Canty and A.J.Rest, J.Amer.Chem.Soc, 95 (1973) 2732
- W.G.Jackson, B.F.G.Johnson, J.W.Kelland, J.Lewis and K.Schorpp,
  J.Organometal.Chem., 87 (1975) C27 and 88 (1975) C17; E.Tachikawa,
  J.R.Shapley and C.G.Pierpont, J.Amer.Chem.Soc., 97 (1975) 7172;
  O.Gambino, R.P.Ferrari, M.Chinone and G.A.Vaglio, Inorg.Chim.Acta, 12 (1975)
  155; A.J.Deeming, S.Hasso and M.Underhill, J.C.S.Dalton, (1975) 1614
- 150. O. Gambino, M. Valle, S. Aime and G. A. Vaglio, Inorg. Chim. Acta, 8 (1974) 71
- 151. W.G.Jackson, B.F.G.Johnson and J.Lewis, J.Organometal.Chem., 90 (1975) C13;
   J.Evans, B.F.G.Johnson, J.Lewis and Y.W.Matheson, J.Organometal.Chem.,
   97 (1975) C16
- 152. A.J. Deeming and M. Underhill, J. Chem. Soc., (1974) 1415
- 153. A.J.Centy, A.J.F.Domingos, B.F.G.Johnson and J.Lewis, J.C.S.Dalton, (1973) 2056; A.J.Deeming, R.E.Kimber and M.Underhill, J.C.S.Dalton, (1973) 2859
- 154. J.B.Keister and J.R.Shapley, J.Organometal.Chem., 85 (1975) C29; J.R.Shapley, S.I.Bichter, M.Tachikawa and J.B.Keister, J.Organometal.Chem., 94 (1975) C43
- 155. J.C.Burt, S.A.R.Knox and F.G.A.Stone, J.C.S.Dalton, (1975) 731
- 156. A. Brookes, J. Howard, S.A. R. Knox, V. Riera, F. G. A. Stone and P. Woodward, J.C.S. Chem. Comm., (1973) 727; J. Howard and P. Woodward, J.C.S. Delton, (1975) 59
- 157. A.J.P.Domingos, B.F.G.Johnson and J.Lewis, J.Organometal.Chem.,
  49 (1973) C33
- 158. T.H. Whitesides and R.A. Budnik, J.C.S. Chem. Comm., (1974) 302

- 159. S.Aime, L.Milone, R.Rosetti end P.L.Stanghellini, Gazz.Chim.Ital, 105 (1975) 617
- 160. A.Albini and H.Kisch, Angew.Chem., 87 (1975) 206
- 161. M.I.Bruce, B.L.Goodall, G.L.Sheppard and F.G.A.Stone, J.C.S.Dalton, (1975) 591
- 162. C.C.Yin and A.J.Deeming, J.C.S.Dalton, (1975) 2091
- S.T.Wilson, R.F.Bondurant, T.J.Meyer and D.S.Salmon, J.Amer.Chem.Soc., 97 (1975) 2285
- 164. M.K. Chaudhuri, A.Heas and N.Welcman, J.Organometal. Chem., 91 (1975) 81
- 165. M.K. Chaudhuri, A.Haas and N.Welcman, J.Organometal. Chem., 85 (1975) 85
- 166. R.Bau, B.Don, R.Greatrex, R.J.Haines, R.A.Love and R.D.Wilson, Inorg.Chem., 14 (1975) 3021
- 167. C.L.Raston and A.H. White, J.C.S. Dalton, (1975) 2422
- 166. J.A.S.Howell, T.W.Katheson and M.J.Mays, J.Organometal.Chem., 88 (1975) 363
- 169. M.I.Bruce, G.Shaw and F.G.A.Stone, J.C.S.Dalton, (1972) 1781
- 170. A.Modinos and P.Woodward, J.C.S.Dalton, (1975) 1534
- 171. C.R.Eady, B.F.G.Johnson and J.Lewis, J.C.S.Dalton, (1975) 2606
- 172. K.Wade, J.C.S.Chem.Comm., (1971) 792 and Inorg.Nucl.Chem.Lett., 8 (1972) 559, 563, and 823
- 173. E.H.Braye, L.F.Dahl, W.Hubel and D.L.Wampler, J.Amer.Chem.Soc., 84 (1962) 4633
- 174. R.Mason, K.M. Thomas and D.M.P.Mingos, J.Amer.Chem.Soc., 95 (1973) 3802
- 175. M.R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 5670
- 176. V.G.Albano, P.L.Bellon and G.Ciani, Chem. Comm., (1969) 1024
- 177. C.R.Eady, W.G.Jackson, B.F.G.Johnson, J.Lewis and T.W.Matheson, J.C.S.Dalton, (1975) 958
- 178. A.Forster, B.F.G.Johnson, J.Lewis, T.W.Matheson, B.H.Robinson and W.G.Jæckson, J.C.S.Chem.Comm., (1974) 1042
- 179. S.A.R.Knox, J.W.Koepke, M.A.Andrews and H.D.Kaesz, J.Amer.Chem.Soc., 97 (1975) 3942
- 180. A. Cuccuru and P. Banditelli, Thermochim. Acta, 12 (1975) 409; P. Banditelli and A. Cuccuru, Thermochim. Acta, 12 (1975) 277

176	
181.	L.Milone, S.Aime, E.W.Randall and E.Rosenberg, J.C.S. Chem. Comm.,
	(1975) 452
182.	J.W.Koepke, J.R.Johnson, S.A.R.Knox and H.D.Kaesz, J.Amer.Chem.Soc.,
	97 (1975) 3947
183.	C.G.Cooke and M.J.Mays, J.Cerganometal.Chem., 88 (1975) 231
184.	A.T.T.Hsieh and M.J.Mays, J.Organometal.Chem., 37 (1972) C53
185.	B.F.G.Johnson, J.Lewis and K.T.Schorpp, J.Organometal.Chem., 91 (1975) C13
186.	G.LeBorgne and D.Grandjean, J.Organometal.Chem., 92 (1975) 381
187.	J.J.Mayerle, S.E.Denmark, B.V.DePamphilis, J.A.Ibers and R.H.Holm,
-	J.Amer.Chem.Soc., 97 (1975) 1032
188.	E.T.Huie, C.B.Knobler and H.D.Kaesz, J.C.S.Chem.Comm., (1975) 684
189.	C.G.Cooke, and M.J.Mays, J.C.S.Dalton, (1975) 455
190.	G. Albertin, E. Bordignon, A. A. Orio and G. Troilo, Inorg. Chem., 14 (1975) 238;
	L. di Sipio, S.Calogero, G.Albertin and A.A.Orio, J.Organometal.Chem.,
	97 (1975) 257; G.Albertin, E.Brodignon, U.Croatto and A.A.Orio,
	Gazz.Chim.Ital., 104 (1974) 1041
191.	J.J.Watkins and A.L.Balch, Inorg. Chem., 14 (1975) 2720
192.	A.K.M.Groves, N.J.Morrison and J.A.KcCleverty, J.Organometal.Chem.,
	84 (1975) C5
193.	D.F.Christian, G.R.Clark, W.R.Roper, J.N.Waters and K.R.Whittle,
	J.C.S.Chem.Comm., (1972) 458
194.	G.R.Clark, J.M.Waters and K.R.Whittle, J.C.S.Dalton, (1975) 2556
195.	G.M. Bancroft and P.L. Sears, Inorg. Chem., 14 (1975) 2716
196.	R.A.Head, J.F.Nixon, G.J.Sharp and R.N.Clark, J.C.S.Dalton, (1975) 2054
197.	P.Meakin, A.D.English, S.D.Ittel and J.P.Jesson, J.Amer.Chem.Soc.,
	97 (1975) 1254
198.	J.W.Rathke and E.L.Muetterties, J.Amer.Cheg.Soc., 97 (1975) 3272;
	H.H.Karsch, H.F.Klein and H.Schmidbaur, Angew.Chem., 87 (1975) 630
199.	R.A.Head and J.F.Nixon, J.C.S.Chem.Comm., (1975) 135
200.	CC.Su and J.W.Faller, J.Organometal.Chem., 84 (1975) 53
201.	P.Finn and W.L.Jolly, Inorg. Chem., 11 (1971) 893

202. P.Hackett and A.R.Manning, J.C.S.Dalton, (1975) 1606

- 203. G.R.Clark, K.R.Grundy, W.R.Roper, J.M.Waters and K.R.Whittle, J.C.S.Chem.Comm., (1972) 119
- 204. G.R.Clark, J.M. Waters and K.R. Whittle, J.C.S. Dalton, (1975) 2233.
- 205. J.A.Segal and B.F.G.Johnson, J.C.S.Dalton, (1975) 677
- 206. J.A.Segal and B.F.G.Johnson, J.C.S.Dalton, (1975) 1990
- 207. S.Sarkar, R.Singh and R.Mishra, J.Inorg.Nucl.Chem., 37 (1975) 578
- 208. D.Mulvey and W.A.Waters, J.C.S.Dalton, (1975) 951
- F-Bottomley, E.M.R.Kiremire and S.G.Clarkson, J.C.S.Dalton, (1975) 1909;
   F.Bottomley, S.G.Clarkson, and E.K.Kiremire, J.C.S.Chem.Comm., (1975) 91
- 210. S.D.Pell and J.N.Armor, J.Amer.Chem.Soc., 97 (1975) 5012
- 211. J.N. Armor, R.Furman and M.Z.Hoffman, J.Amer.Chem.Soc., 97 (1975) 1737
- 212. R.W. Callehan, G.M. Brown and T.J. Meyer, J. Amer. Chem. Soc., 97 (1975) 894
- 213. S. Sueur and C. Bremard, Bull. Soc. Chim. Fr., (1975) 961
- 214. J.W.Buchler and K.L.Lay, Z.Naturforsch., 30B (1975) 385
- 215. W.R.Scheidt and M.E.Frisse, J.Amer.Chem.Soc., 97 (1975) 17
- 216. R.Bonnett, A.A.Charalambides, R.A.Martin, K.D.Sales and B.W.Fitzsimmons, J.C.S.Chem.Comm., (1975) 884
- 217. A.Szabo and L.D.Barron, J.Amer.Chem.Soc., 97 (1975) 660
- 218. A. Dobson and S. D. Robinson, J. Organometal. Chem., 99 (1975) C63
- 219. T.E.Nappier, R.D.Feltham, J.H.Enemark, A.Kruse and M.Cooke, Inorg.Chem., 14 (1975) 806
- 220. M.Nukaida, T.Nomura and T.Ishimori, Bull.Chem.Soc.Jap., 48 (1975) 1443
- 221. S. Sueur, C. Bremard and G. Nowogrocki, Compte Rend., C, 281 (1975) 401
- 222. N.M. Sinitsyn and N.I.Klinova, Zh. Neorg. Khim., 20 (1975) 3134
- 223. N. V. Ivanova and A. B. Nikol'skii, Koord. Khim., 1 (1975) 697
- 224. N.M.Sinitsyn, V.F.Travkin, A.A.Svetlov and Z.B.Itking, Koord.Khim., 1 (1975) 103
- 225. P.Legzdins and J.T.Kalito, Inorg. Chem., 14 (1975) 1875
- 226. T.Kruck and W.Molls, Z.Anorg.Allgem.Chem., 411 (1975) 54
- 227. M.Sato and T.Yoshida, J.Organometal.Chem., 94 (1975) 403
- 228. K.R. Grundy, K.R. Laing and W.R. Roper, J.C.S. Chem. Comm., (1970) 1500
- 229. G.R. Clark, J.N. Waters and K.R. Whittle, J.C.S. Dalton, (1975) 463

- 230. C.G.Fierpont and R.Eisenberg, Inorg. Chem., 11 (1972) 1088
- 231. B.L.Haymore and J.A.Ibers, Inorg. Chem., 14 (1975) 2610

- 232. G. Dolcetti, L. Busetto and A. Palazzi, Inorg. Chem., 13 (1974) 222; W.E. Caproll, F.A. Deeney and F.J. Lalor, J.C.S. Dalton (1974) 1430
- 233. K.R.Leing and W.R.Roper, J.Chem.Soc., A (1970) 2149; D.Hall and R.B.Williamso. Cryst.Struct.Comm., 3 (1974) 327
- 234. K.R.Grundy, C.A.Reed and W.R.Roper, Chem. Comm., (1970) 1501; K.R.Laing and W.R.Roper, J.Chem.Soc., A, (1970) 2149
- 235. C.G.Pierpont and R.Eisenberg, Inorg. Chem., 11 (1972) 1094
- 236. G.R.Clark, K.R.Grundy, W.R.Roper, J.M.Waters and K.R.Whittle, J.C.S. Chem.Comm., (1972) 119
- 237. K.R. Grundy, K.R. Laing and W.R. Roper, Chem. Comm., (1970) 1500
- J.M.Waters, and K.R.Whittle, Chem.Comm., (1971) 518; G.R.Bentley, K.R.Laing,
   W.R.Roper and J.M.Waters, Chem.Comm., (1970) 998
- 239. C.G.Pierpont and R.Eisenberg, Inorg.Chem., 12 (1973) 199
- A.Araneo, V.Valenti and F.Cariati, J.Inorg.Nucl.Chem., 32 (1970) 1877;
   S.D.Robinson and M.F.Uttley, J.C.S.Dalton, (1972) 1
- 241. W. Silverthorn and R. D. Feltham, Inorg. Chem., 6 (1967) 1662
- 242. M.H.B.Stiddard and W.E.Townsend, Chem. Comm.,
- 243. N.W. Bishop, J. Chatt and J.R. Dilworth, J.C.S. Chem. Comm., (1975) 780
- 244. A.A.Diamantis, G.J.Sperrow, M.R.Snow and T.R.Norman, Aust.J.Chem., 26 (1975) 1231
- 245. R.H. Magnuson and H. Taube, J. Amer. Chem. Soc., 97 (1975) 5129
- 246. W.E.Carroll and F.J.Lalor, J.C.S.Dalton, (1973) 1754
- 247. B.L.Haymore and J.A.Ibers, Inorg. Chem., 14 (1975) 1369
- 246. B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 2784
- 249. J.A.McArdle, A.J.Schultz, B.J.Corden and R.Eisenberg, Inorg. Chem., 12 (1973) 1676
- 250. M. Cowie, B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 2617
- G.R.Clark, K.R.Grundy, W.R.Roper, J.M.Waters and K.R.Whittle, J.C.S. Chem.Comm., (1972) 119
- 252. B.L.Haymore and J.A.Ibers, J.Amer.Chem.Soc., 97 (1975) 5369

- 253. J.A.McCleverty, D.Seddon and R.N.Whiteley, J.C.S.Dalton, (1975) 839
- 254. B.L.Haymore and J.A.Ibers, Inorg. Chem., 14 (1975) 3060
- 255. B.L.Haymore, J.A.Ibers and D.W.Meek, Inorg.Chem., 14 (1975) 541
- 256. D.C.Andrews, G.Davidson and D.A.Duce, J.Organometal.Chem., 101 (1975) 113
- 257. S.Sorriso and G.Cardaci, J.C.S.Dalton, (1975) 1041
- 258. A.R.Luxmann and M.R.Truter, Acta Cryst., 15 (1962) 1117
- 259. G.Cardaci, J.Amer.Chem.Soc., 97 (1975) 1412
- 260. R.Fields, G.L.Godwin and R.N.Haszeldine, J.C.S.Dalton, (1975) 1867
- 261. R.B.King and C.A.Harmon, J.Organometal.Chem., 88 (1975) 93
- 262. F.A. Cotton and P. Lahuerta, Inorg. Chem., 14 (1975) 116
- 263. J.Kagan, W.-L.Lin, S.N.Cohen and R.N.Schwartz, J.Organometal.Chem., 90 (1975) 67
- 264. I.S.Krull, J.Organometal.Chem., 57 (1973) 363
- 265. M. Green, R.F. Hughes and A.J. Welch, J.C.S. Chem. Comm., (1975) 487
- 266. M. Green and R.P. Hughes, J.C.S. Chem. Comm., (1975) 619
- 267. K. Cann and J. C. Barborak, J. C. S. Chem. Comm., (1975) 190
- 268. A.Stockis and E.Weissberger, J.Amer.Chem.Soc., 97 (1975) 4288
- 269. S.Komika and A.Yamamoto, J.Organometal. Chem., 87 (1975) 333
- 270. B.C.Parakkat, P.J.Ouseph, R.L.Vonnahme, and D.H.Gibson, J.Inorg.Nucl.Chem., 37 (1975) 2340
- A.N.Nesmeyanov, L.A.Fedorov, N.P.Avakyan, P.V.Petrovskii, E.I.Fedin,
   E.V.Arshavskaya and I.I.Kritskaya, J.Organometal.Chem., 101 (1975) 121
- 272. E.L.Muetterties, B.A.Sosinsky and K.I.Zamaraev, J.Amer.Chem.Soc., 97 (1975) 5299
- 273. D.H.Gibson and D.K.Erwin, J.Organometal.Chem., 86 (1975) C31
- 274. K.-N. Chen., R.M. Moriarty, B.G. DeBoer, M.R. Churchill and H.J.C.Yeh, J. Amer. Chem. Soc., 97 (1975) 5602
- 275. T.H. Whitesides and R.W. Arhart, Inorg. Chem., 14 (1975) 209
- 276. D.A.T.Young, J.R.Holms and H.D.Kzesz, J.Amer.Chem.Soc., 91 (1969) 6968
- 277. A.J.Pearson, Tetra.Lett., (1975) 3617
- 278. A.N.Nesmeyanov, N.P.Avakyan, G.M.Babakhina and I.I.Kritskaya, Izv.Akad.Nauk SSSR, Ser.Khim., (1975) 2133

180	
279.	M.Green, B.Lewis, J.J.Daly and F.Sanz, J.C.S.Dalton, (1975) 1118; A.Bond,
	B.Lewis and M.Green, J.C.S.Dalton, (1975) 1109
280-	N. Green and B. Lewis, J. C. S. Dalton, (1975) 1137
281.	S.Sbrana, G.Braca and E.Benedetti, J.C.S.Dalton, (1975) 754
282.	D.F.Gill, B.E.Mann, and B.L.Shaw, J.C.S.Dalton, (1973) 311
283.	P.S.Hallman, B.R.McGarvey, and G.Wilkinson, J.Chem.Soc., A (1968) 3143;
	D.Rose, J.D.Gilbert, R.P.Richardson and G.Wilkinson, J.Chem.Soc., A (1969) 2610
284.	S.Sadeh and Y.Gaoni, J.Organometal.Chem., 93 (1975) C31
285.	J.A.S.Howell, J.Lewis, T.W.Matheson end D.R.Russell, J.Organometal.Chem.m
	99 (1975) C55
286.	R.B.King and C.A.Harmon, J.Organometal.Chem., 86 (1975) 239
287.	P.B.Hitchcock, J.F.Nixon and J.Sincleir, J.Organometal.Chem., 86 (1975) 034
285.	R.Aumann and H.Averbeck, J.Organometal.Chem., 85 (1975) C4
269.	B.F.G.Johnson, J.Lewis, D.J.Thompson and B.Heil, J.C.S.Delton, (1975) 567
290.	A.Eisenstadt, Tetra.Lett., (1972) 2005
291.	D.A.Brown, N.J.Fitzpatrick and N.J.Mathews, J.Organometal.Chem.,
	88 (1975) C27
292.	A.Efraty, M.H.A.Huang and C.A.Weston, J.Organometal.Chem., 91 (1975) 327
293.	H.Irngartinger, H.Kimling, A.Krebs and R.Maeusbacher, Tetra.Lett.,
	(1975) 2571
294.	E.R.Biehl and P.C.Reeves, Synthesis, (1974) 883
295.	P.Marcinal and E.Cuingnet, Tetra.Lett., (1975) 1223
296.	P.Marcinal and E.Cuingnet, Tetra.Lett., (1975) 3827
297.	I.Fischler, K.Hildenbrand and E.Koerner von Gustorf, Angew.Chem.,
	87 (1975) 835
298.	A.Sanders and W.P.Giering, J.Amer.Chem.Soc., 97 (1975) 919
299.	P.Reeves, T.Devon and R.Pettit, J.Amer.Chem.Soc., 91 (1969) 5888;
	E.K.G.Schmidt, Angew.Chem., 85 (1973) 820; R.H.Grubbs and R.A.Grey,
	J.Amer.Chem.Soc., 95 (1973) 5765
<u> 3</u> 00.	J.Meinwald and J.Mioduski, Tetra.Lett., (1974) 3839
301.	D.C.Andrews, G.Davidson and D.A.Duce, J.Organometal.Chem., 97 (1975) 95

.

302. Y.Shvo and E.Hazum, J.C.S. Chem. Comm., (1975) 829
303. Y. Shvo and E. Hazum, J. C. S. Chem. Comm., (1974) 336

304. M.Elian and R.Hoffmann, Inorg. Chem., 14 (1975) 1058

- 305. M.A.Busch and R.J.Clark, Inorg. Chem., 14 (1975) 219
- 306. M.A.Busch and R.J.Clark, Inorg. Chem., 14 (1975) 226
- 307. C.B.Ungermann and K.G.Caulton, J.Organometal.Chem., 94 (1975) C9
- 308. B.F.G.Johnson, J.Lewis and D.J.Thompson, Tetra.Lett., (1974) 3789
- 309. S.M.Nelson, C.M.Regan and M.Sloan, J.Organometal.Chem., 96 (1975) 363
- 310. T.Matsukura, K.Mano and A.Fujino, Bull.Chem.Soc.Japan, 48 (1975) 2464
- 311. T.H.Whitesides and J.P.Neilan, J.Amer.Chem.Soc., 97 (1975) 907
- 312. N.S.Nametkin, A.I.Nekhaev, V.D.Tyurin and S.P.Gubin, Izv.Akad.Nauk SSSR, Ser.Khim., (1975) 2067
- 313. R. Davis, M. Green and R. P. Hughes, J. C. S. Chem. Comm., (1975) 405
- 314. A. Carbonaro, A. Creco and G. Dallasta, J. Org. Chem., 33 (1968) 3948
- 315. S.Sorriso and G.Cardaci, J.Organometal.Chem., 101 (1975) 107
- 316. G.Cardaci and G.Concetti, J'Organometal.Chem., 90 (1975) 49
- 317. Montedison S.p.A., Ital.Patent 907326; Chem.Abs., 83 (1975) 59055
- 318. Montedison, S.p.A., Ital. Patent 907325; Chem. Abs., 83 (1975) 59056
- 319. I.Fischler and E.Koerner von Gustorf, Z.Naturforsch, 30B (1975) 291
- 320. W.Schaefer, H.J.Kerrinnes and U.Langbein, Ger.(East) Patent, 107862; Chem.Abs., 82 (1975) 160846
- 321. C.G.Krespan, J.Org.Chem., 40 (1975) 261.
- 322. M. Buttrill, R. Goddard, M. Green, R. P. Hughes, M. K. Lloyd, B. Lewis and P. Woodward, J. C. S. Chem. Comm., (1975) 253
- J.L.Boston, D.W.A.Sharp and G.Wilkinson, J.Chem.Soc., (1962) 3488;
   R.D.Dickson and D.B.W.Yawney, Austral.J.Chem., 20 (1967) 77
- 324. N.S.Nametkin, A.I.Pekhaev, V.D.Tyurin, S.P.Gubin and L.P.Kolesnikova, Neftkhimiya, 15 (1975) 380; Chem.Abs., 83 (1975) 147583
- 325. J.-Y.Lallemand, P.Laszlo, C.Muzette and A.Stockis, J.Organometal.Chem., 91 (1975) 71
- 326. N.S.Nemetkin, A.I.Nekhaev, V.D.Tyurin and S.P.Gubin, Izv.Akad.Nauk SSSR, Ser.Khim., (1975) 676
- 327. A.J.Birch and I.D.Jenkins, Tetra.Lett., (1975) 119

- 182
- 328. W.Fink, Helv.Chim.Acts, 58 (1975) 1205
- 329. H.Alper, J.Organometal.Chem., 95 (1975) 95
- 330. F.A. Cotton and G. Deganello, J. Organometal. Chem., 38 (1972) 147; ibid., J. Amer. Chem. Soc., 94 (1972) 2142 and 95 (1973) 396
- 331. F.A. Cotton, V.W. Day and K.I. Hardcastle, J. Organometal. Chem., 92 (1975) 569
- 332. G.Evans, B.F.G.Johnson and J.Lewis, J.Organometal. Chem., 102 (1975) 507
- 333. C. Amith and D. Ginsburg, Tetrahedron, 30 (1974) 3415
- 334. I.A.Zakharova, Y.V.Salyn, I.A.Garbouzova, V.T.Aleksanyan and M.A.Frianichnicova, J.Orgaometal.Chem., 102 (1975) 227
- 335. D.L.Reger and A.Gabrielli, J.Amer.Chem.Soc., 97 (1975) 4421
- 336. B.F.G. Johnson, J.Lewis, P.McArdle and G.L.P.Randall, J.C.S. Dalton (1972) 456
- 337. G.Deganello, T.Boschi and L.Toniolo, J.Organometal.Chem., 97 (1975) C46
- 338. T.Tsuchiya and V.Snieckus, Can.J.Chem., 53 (1975) 519
- 339. L.A.Paquette, S.V.Ley, S.Maiorana, D.F.Schneider, M.J.Broadhurst and R.A.Boggs, J.Amer. Chem. Soc., 97 (1975) 4658
- 340. B.F.G.Johnson, J.Lewis and J.W.Queil, J.C.S.Dalton, (1975) 1252
- 341. M.Brookhert, E.R.Davis and D.L.Hunt, J.Amer.Chem.Soc., 94 (1972) 7853
- 342. M. Cooke, C.R.Russ and F.G.A.Stone, J.C.S.Dalton, (1975) 256
- 343. M. Cooke, J. Howard, C.R. Russ, F.G.A. Stone and P. Woodward, J. Organometal. Cher, 78 (1974) C43
- 344. K.W.Muir, R.Walker, E.W.Abel, T.Blackmore and R.J.Whitley, J.C.S.Chem.Comm., (1975) 698
- 345. A.J.P. Domingos, B.F.G. Johnson and J.Lewis, J.C.S.Delton, (1975) 2288
- 346. R. Goddard, A.P. Humphries, S.A.R. Knox and P. Woodward, J.C.S. Chem. Comm., (1975) 507
- 347. F.A. Cotton and R.Eiss, J.Amer. Chem. Soc., 91 (1969) 6593
- 348. G.N. Schrauzer and P.W. Glockner, J. Amer. Chem. Soc., 90 (1968) 2800
- 349. C.Fotvin, L.Davignon and G.Fanneter, Bull.Soc.Chim.France, (1975) 507
- 350. D.J.Cole-Hamilton, T.A.Stephenson and D.R.Robertson, J.C.S.Dalton (1975) 1260
- 351. H.A.Tayim and F.T.Mahmoud, J.Organometal.Chem., 92 (1975) 107
- 352. M.Z.Iqbal, Pak.J.Sci.Res., 24 (1972) 299; Chem.Abs., 82 (1975) 86375

- J.Hueller, C.G.Kreiter, B.Mertschenk and S.Schmitt, Chem.Ber., 108 (1975) 273;
   P.Pertici, G.Vitulli and L.Porri, J.C.S.Chem.Comm., (1975) 846
- 354. A.N.Nesmeyanov, Y.S.Nekrasov, N.I.Vasyukova, L.S.Kotova and N.A.Vol'kenau, J.Organometal.Chem., 96 (1975) 265
- 355. D.E.Games, A.H.Jackson, L.A.P.Kane-Maguire and K.Taylor, J.Organometal.Bem., 88 (1975) 345
- 356. T.H. Whitesides and R.A. Budnik, Inorg. Chem., 14 (1975) 664
- 357. K.E.Hine, B.F.G.Johnson and J.Lewis, J.C.S. Chem. Comm., (1975) 81
- 358. A.J.Birch and A.J.Pearson, Tetra.Lett., (1975) 2379
- 359. G.R.John, L.A.P.Kane-Maguire and C.Eaborn, J.C.S. Chem. Comm., (1975) 481
- 36C. L.A.P.Kane-Maguire and C.A.Mansfield, J.C.S.Chem.Comm., (1973) 540; C.A.Mansfield, K.M.Al-Kathumi and L.A.P.Kane-Maguire, J.Organometal.Chem., 71 (1974) Cl1
- 361. A.J.Birch, I.D.Jenkins and A.J.Liepa, Tetra.Lett., (1975) 1723
- 362. N.S.Nemetkin, V.D.Tyurin and V.I.Ivanov, Izv.Akad.Neuk SSSR, Ser.Khim., (1975) 1911
- 363. A.N.Nesmayanov, N.A.Vol'kenau, L.S.Shilovtseva and V.A.Petrakova, J.Organometal.Chem., 85 (1975) 365
- 364. B.A.Sosinsky, S.A.R.Knox and F.G.A.Stone, J.C.S.Dalton, (1975) 1633
- 365. B.F.G.Johnson, R.D.Johnson, P.L.Josty, J.Lewis and I.G.Williams, Nature, 213 (1967) 901; T.H.Whitesides and R.A.Budnik, J.C.S.Chem.Comm., (1973) 87
- 366. R.Mason and K.M.Thomas, J.Organometal.Chem., 43 (1972) C39
- 367. F.A.Cotton and M.D.LaPrade, J.Organometal.Chem., 39 (1972) 345
- 368. A.Brookes, S.A.R.Knox, V.Riera, B.A.Sosinsky and F.G.A.Stone, J.C.S.Dalton, (1975) 1641
- 369. J.A.K.Howard, S.A.R.Knox, V.Riera, B.A.Sosinsky, F.G.A.Stone and P.Woodward, J.C.S.Chem.Comm., (1974) 673
- 370. A.Eisenstadt, J.Organometal.Chem., 97 (1975) 443
- 371. D.F.Hunt, G.C.Farrant and G.T.Rodeheaver, J.Organometal.Chem., 38 (1972) 349
- 372. G.Schiavon, C.Paradisi and C.Boanini, Inorg. Chim. Acta, 14 (1975) L5

- 373. J.Müller and S.Schmitt, J.Organometal. Chem., 97 (1975) 275
- 374. F.Braunstein, J.Dehand, M.Gross and P.Lemoine, J.Therm.Anal., 8 (1975) 109
- 375. D.F. Shriver, J. Organometal. Chem., 94 (1975) 259
- 376. J.R.Miller and F.S.Stephens, J.C.S.Dalton, (1975) 833
- 377. R.D.Adams, and F.A.Cotton, J.Amer.Chem.Soc., 95 (1973) 6589; R.M.Kirchner,
  T.J.Marks, J.S.Kristoff and J.A.Ibers, J.Amer.Chem.Soc., 95 (1973) 6602;
  O.A.Gansow, A.R.Burke and W.D.Vernon, J.Amer.Chem.Soc., 94 (1972) 2550;
  R.D.Adams, M.Brice and F.A.Cotton, J.Amer.Chem.Soc., 95 (1973) 6594;
  R.D.Adams and F.A.Cotto, Inorg.Chem., 13 (1974) 249; R.D.Adams, F.A.Cotton
  and J.M.Troup, Inorg.Chem., 13 (1974) 257
- 578. U.Behrens and E.Weiss, JOrganometal. Chem., 96 (1975) 399
- 379. U.Behrens and E.Weiss, J.Organometal.Chem., 59 (1973) 335
- 380. U.Behrens and E.Weiss, J.Organometel.Chem., 96 (1975) 435
- 381. R.N. Moriarty, K.-N. Chen, M.R. Churchill and S.W.-Y. Chang, J.Amer. Chem. Soc., 96 (1974) 3661.
- 382. F.R.Churchill and S.W.-Y.Chang, Inorg. Chem., 14 (1975) 1680
- 383. F.A. Cotton, B.A. Frenz and A. Shaver, Inorg. Chim. Acta, 7 (1973) 161
- 384. F.A.Cotton, D.L.Hunter and P.LaHuerta, Inorg. Chem., 14 (1975) 511
- 385. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 22
- 386. I.L.C.Campbell and F.S.Stephens, J.C.S.Dalton, (1975) 226
- 387. J.E.Ellis and E.A.Flom, J.Organometal.Chem., 99 (1975) 263
- 368. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 982
- 389. R.D.Adams and F.A. Cotton, Synth. React. Inorg. Metl. Org. Chem., 4 (1974) 477
- 390. J.A.S.Howell, T.W.Matheson and M.J.Mays, J.C.S.Chem.Comm., (1975) 865
- 391. S. Willis and A.R. Manning, J. Organometal. Chem., 97 (1975) C49
- 392. T.H.Whitesides and J.Shelly, J.Organometal.Chem., 92 (1975) 215
- 393- D.C.Harris and H.B.Gray, Inorg.Chem., 14 (1975) 1215
- 394. A.F.Humpries and S.A.R.Knox, J.C.S.Dalton, (1975) 1710
- M.I.Bruce, M.A.Cairns and M.Green, J.C.S.Delton, (1972) 1293; O.Gambino,
   M.Valle, S.Aime and G.A.Vaglio, Inorg.Chim.Acta, 8 (1974) 71
- 396. A.J.Canty, A.J.F.Domingos, B.F.G.Johnson and J.Lewis, J.C.S.Dalton, (1973) 2056

184

- 397. W.F.Fehlhammer and A.Mayr, Angew.Chem., 87 (1975) 776
- 398. P.M. Treichel and K.P. Wagner, J. Organometal. Chem., 88 (1975) 199-
- 399. J.W.Faller and B.V.Johnson, J.Organometal. Chem., 88 (1975) 101
- 400. W-H-Knoth, Inorg-Chem., 14 (1975) 1566
- 401. K.M. Nicholls, J. Amer. Chem. Soc., 97 (1975) 3254
- 402. A.Rosan and H.Rosenblum, J.Crg. Chem., 40 (1975) 3621
- 403. K.M.Nicholas and A.M.Rosan, J.Organometal. Chem., 84 (1975) 351
- 404. A.Cutler, D.Ehntholt, P.Lennon, K.Nicholes, D.F.Harten, M.Hadhaverao, S.Raghu, A.Rosen and M.Rosenblum, J.Amer.Chem.Soc., 97 (1975) 3149
- 405. H.L.H. Green, and F.L.I.Nagy, J.Chem.Soc., (1963) 169; J.-Y.Merour and
  F.Cadiot, Compte.Rend., C271 (1970) 83; W.P.Giering, S.Raghu, M.Rosenblum,
  A.Cutler, D.Ehntholt and R.W.Fish, J.Amer.Chem.Soc., 94 (1972) 8251;
  W.P.Giering and M.Rosenblum, J.C.S.Chem.Comm., (1971) 441; W.P.Giering,
  M.Rosenblum and J.Tancrede, J.Amer.Chem.Soc., 94 (1972) 7170
- 406. M.Rosenblum, Acc. Chem. Res., 7 (1974) 122
- 407. W.F.Giering, S.Raghu, M.Rosenblum, A.Cutler, D.Ehntholt and R.W.Fish,
   J.Amer.Chem., Soc., 94 (1972) 8251; W.P.Giering and M.Rosenblum, J.C.S.
   Chem.Comm., (1971) 441
- 408. D.W.Lichtenberg and A.Wojcicki, J.Organometal. Chem., 94 (1975) 311
- 409. B.M. Foxman, J.C.S.C hem. Comm., (1975) 221
- 410. M. Green and R.P. Hughes, J.C.S. Chem. Comm., (1975) 862
- 411. A.N.Nesmeyanov, N.E.Kolobova, I.E.Zlotina, Y.S.Nekrasov, V.F.Sizoi and K.N.Anisimov, Dokl.Akad.Nauk SSSR, 224 (1975) 604
- 412. R.E.Dessy, R.L.Pohl and R.B.King, J.Amer.Chem.Soc., 88 (1966) 5121
- 413. R.B.King and M.B.Bisnette, J.Organometal.Chem., 7 (1967) 311
- 414. A.N.Nesmeyanov, K.N.Anisimov, N.E.Kolobova and V.N.Khandozhko, Izv.Akad. Nauk SSSR, Ser.Khim., (1971) 462; J.M.Burlitch, J.Amer.Chem.Soc., 91 (1969) 4563
- 415. C.P.Casey, C.R.Cyr, R.L.Anderson and D.F.Marten, J.Amer.Chem.Soc.,
  97 (1975) 3053
- 416. C.P.Casey, Chem.Comm., (1971) 1220; R.B.King, J.Amer.Chem.Soc., 85 (1963) 1918
- 417. A.N.Nesmeyenov, E.G.Perevalova, L.I.Leont'eva, S.A.Eremin and O.V.Grigor'eva, Izv.Akad.Nauk SSSR, Ser.Khim., (1974) 2645

- 186
- 418. T.Bauch, A.Sanders, C.V.Magatti, P.Waterman, D.Judelson and W.P.Giering, J.Organometal.Chem., 99 (1975) 269
- 419. R.B.King and K.C.Hodges, J.Amer. Chem. Soc., 97 (1975) 2702
- 420. O.K.Abu Salah and M.I.Bruce, J.C.S.Dalton, (1975) 2311
- 421. O.M. Abu Salah, M.I.Bruce, R.E.Davis and N.V. Haghavan, J. Organometal. Chem.,
   64 (1974) C48
- 422. J.L.Davidson, M.Green, F.G.A.Stoen and A.J.Welch, J.C.S.Chem.Comm., (1975) 266
- 423. T.Blackmore, M.I.Bruce, F.G.A.Stone, R.E.Davis and A.Garza, J.C.S.Delton, (1974) 106
- 424. B.L.Booth, R.N.Haszeldine and N.I.Tucker, J.C.S.Dalton, (1975) 1439
- 425. B.L.Booth, R.N.Haszeldine and N.I.Tucker, J.C.S.Dalton, (1975) 1446
- 426. K. Stenley and M. C. Beird, J. Amer. Chem. Soc., 97 (1975) 4292
- 427. K.Stanley and H.C.Baird, J.Amer.Chem.Soc., 97 (1975) 6598
- 428. T.C.Flood, F.J.Disanti and D.L.Miles, J.C.S.Chem.Comm., (1975) 336
- 429. S.E.Jacobson and A.Wojcicki, J.Amer.Chem.Soc., 93 (1971) 2535
- 430. T.C.Flood and F.J.Disanti, J.C.S.Chem.Comm., (1975) 18
- 431. D.Slack and M.C.Baird, J.C.S.Chem.Comm., (1974) 701
- 432. L.J.Dizikes and A.Wojcicki, J.Amer.Chem.Soc., 97 (1975) 2540
- 433. T.Gattig and A.Wojcicki, J.Amer.Chem.Soc., 96 (1974) 262
- 434. S.R.Su and A.Wojcicki, Inorg. Chem., 14 (1975) 89
- 435. D.W.Lichtenberg and A.Wojcicki, Inorg. Chem., 14 (1975) 1295
- 436. R.B.King and K.E Pannell, J.Amer. Chem. Soc., 90 (1968) 3984
- M.Bottrill, R.Goddard, M.Green, R.P.Hughes, M.K.Lloyd, S.H.Taylor and
   P.Woodward, J.C.S.Dalton, (1975) 1150
- 438. Y.Yamamoto and H.Yamazaki, J.Organometal.Chem., 90 (1975) 329
- 439. K.Stanley, D.Groves and M.C.Baird, J.Amer.Chem.Soc., 97 (1975) 6599
- 440. N.H.Tennent, S.R.Su, C.A.Poffenberger and A.Wojcicki, J.Organometal.Chem., 102 (1975) C46
- 441. A.C.Gingell and A.J.Rest, J.Organometal. Chem., 99 (1975) C27
- 442. J.J.Alexander, J.Amer.Chem.Soc., 97 (1975) 1729
- 443. M.Z.Iqbal, Pak.J.Sci.Res., 25 (1973) 81; Chem.Abs., 83 (1975) 164333

- 444. G. Cerveau, E. Coloner, R. Corriu and W.E. Douglas, J.C.S. Chem. Comm., (1975) 410
- 445. K.H.Pannell, Trans. Met. Chem., 1 (1975) 36
- 446. C.Windus, S.Sujishi and W.P.Giering, J.Organometal.Chem., 101 (1975) 279
- 447. W.Malisch and P.Panster, Chem.Ber., 108 (1975) 2554
- 448. J.E.Bulkowski, N.D.Miro, D.Sepelak and C.H.van Dyke, J.Crganometal.Chem., 101 (1975) 267
- I-Haiduc, R.E.King and H.Gilman, Rev.Roum.Chim., 19 (1974) 1709; Chem, Abs.,
   93 (1975) 58988
- 450. M.Hoefler, J.Scheuren and D.Spilker, J.Organometal.Chem., 102 (1975) 205
- 451. G.V.Lisichkin, F.S.Denisov, A.Y.Yuffa and M.G.Gol'fel'd, USSR Patent,
  467080; Chem.Abs., 83 (1975) 59057
- 452. Y.S.Nekrasov, D.V.Zagorevskii, V.F.Sizoi and F.S.Denisov, J.Organometal.Chem.,
  97 (1975) 253
- 453. S.A.R.Knox, B.A.Sosinsky and F.G.A.Stone, J.C.S.Dalton, (1975) 1647
- 454. R.Burton, L.Pratt and G.Wilkinson, J.Chem.Soc., (1960) 4290; M.R.Churchill, Inorg.Chem., 6 (1967) 190
- 455. R.B.King and M.N.Ackermann, Inorg. Chem., 13 (1974) 637
- 456. M.R.Churchill, F.R.Scholer and J.Wormald, J.Organometal.Chem., 28 (1971) C21; M.R.Churchill and J.Wormald, Inorg.Chem., 12 (1973) 191
- M.R. Churchill and P.H. Bird, J.Amer. Chem. Soc., 90 (1968) 800;
   M.R. Churchill, K. Gold and P.H. Bird, Inorg. Chem., 8 (1969) 1956
- 458. J.R. Chipperfield, J.Ford and D.E. Webster, J.C.S.Dalton, (1975) 2042
- 459. H.E.Sasse, and M.L.Ziegler, Z.Naturforsch, 30B (1975) 30
- 460. B.Herber and H.Werner, Synth.React.Inorg.Met.-Org.Chem., 5 (1975) 189
- 461. P.M. Treichel, K.P. Wagner and M.J. Mueh, J. Organometal. Chem., 86 (1975) C13
- 462. M.J.Barrow and G.A.Sim, J.C.S.Dalton, (1975) 291
- 463. A.N.Nesmeyanov, Y.A.Chapovsky and Y.A.Ustynyuk, J.Organometal.Chem.,
  9 (1967) 345
- 464. R.P.Stewart, Jr., J.J.Benedict, L.Isbrandt and R.S.Ampulski, Inorg.Chem., 14 (1975) 2933
- 465. R.B.King and J.C.Cloyd, Jr., Inorg. Chem., 14 (1975) 1550

•	188	
·	466.	R.B.King, J.A.Zinich and J.C.Cloyd, Jr., Inorg. Chem., 14 (1975) 1554
	467 .	D.Sellmann and E.Kleinschmidt, Angew.Chem., 87 (1975) 595
	468.	J.W.Faller and B.V.Johnson, J.Organometal.Chem., 96 (1975) 99
	469.	D.L.Reger, Inorg. Chem., 14 (1975) 660
	470.	R.J.Haines and A.L.du Preez, J.Organometal.Chem., 84 (1975) 357
	471.	T.Blackmore, M.I.Bruce and F.G.A.Stone, J.Chem.Soc., A (1971) 2376
	472.	W.Malisch and P.Panster, J.Organometal.Chem., 99 (1975) 421
	473.	R.B.English, R.J.Haines and C.R.Nolte, J.C.S.Dalton, (1975) 1030
	474.	D.D.Watkins, Jr., and T.A.George, J.Organometal.Chem., 102 (1975) 71
	475.	R.J.Haines, J.A. de Beer and R.Greatrex, J.Organometal.Chem., 85 (1975) 89
	476.	J.L.Davidson and D.W.A.Sharp, J.C.S.Dalton, (1975) 2283
	477•	J.L.Davidson, W.Harrison, D.W.A.Sharp, J.Organometal.Chem., 46 (1972) C47
	478.	D.G.Alway and K.W.Barnett, J.Organometal.Chem., 99 (1975) C52
	479-	S.J.Anderson and A.H.Norbury, J.C.S.Chem.Comm., (1975) 48
	480.	D.A.Symon and T.C.Waddington, J.C.S.Dalton, (1975) 2140
	481.	P.Braunstein and J.Dehand, J.Organometal.Chem., 88 (1975) C24
	482.	G.E.McVicker, Inorg.Chem., 14 (1975) 2087
	483.	A-N.Nesrayanov, N.A.Vol'kenau, L.S.Shilovtseva and V.A.Petrakova,
		Izv.Akad.Nauk SSSR, Ser,Khim., (1975) 1151
	484.	A.N.Nesneyanov, I.N.Bolesova, L.S.Polkovnikova and L.S.Kotova, Koord.Khim.,
		1 (1975) 1465
	485.	P.M.Treichel and J.W.Johnson, J.Organometal.Chem., 88 (1975) 207
	486.	R.G.Sutherland, S.C.Chen, J.Panneloek and C.C.Lee, J.Organometal.Chem.,
		101 (1975) 221
	487.	W.H.Morrison, E.Y.Ho and D.N.Hendrickson, Inorg.Chem., 14 (1975) 500
	466.	R.K.Fomeroy and W.A.G.Graham, Can.J.Chem., 53 (1975) 2985
	489.	L.Y.Y. Chan and W.A.G. Graham, Inorg. Chem., 14 (1975) 1778
	490.	R.J.Restivo, G.Ferguson, D.J.O'Sullivan and F.J.Lalor, Inorg. Chem.,
		14 (1975) 3046

491. A.J.Ashe,III, E.Keyers, P.Shu, T. von Lehmann and J.Bastide,
 J.Amer.Chem,Soc., 97 (1975) 6865

- 492. G.E.Herberich and H.J.Becker, Angew.Chem.Int,Ed.Engl., 12 (1973) 764 and
  14 (1975) 184; G.E.Herberich, Chimia, 26 (1972) 475; G.E.Herberich, H.J.Becker,
  and G.Greiss, Chem.Ber., 107 (1974) 3780
- 493. D.E. Braitsch and R.Kumarappan, J.Organometal. Chem., 84 (1975) C37
- 494. W.M.Maxwell and R.N.Grines, J.C.S.Chem.Comm., (1975) 943
- 495. W.M.Maxwell, V.R.Miller and R.N.Grimes, Covt.Rep Announce, (U.S., 74 (1974) 51; Chem.Abs., 82 (1975) 98030
- 496. K.P.Callahan, W.J.Evans, F.Y.Lo, C.E.Strouse and M.F.Hawthorne, J.Amer.Chem.Soc., 97 (1975) 296
- 497. W.J.Evans, G.F.Dunks and M.F.Hawthorne, J.Amer.Chem.Soc., 95 (1973) 4565
- 498. A.R.Siedle, J.Crganometal.Chem., 90 (1975) 249
- 499. L.I.Zakharin, V.N.Kalinin and N.P.Levina, Zh.Obshch.Khim., 44 (1974) 2478
- 500. F.Sato, T.Yamamoto, J.R.Wilkinson and L.J.Todd, J.Organometal.Chem., 80 (1975) 243
- 501. K.Pankowski, E.Samuel and M. Bigorgne, J.Organometal. Chem., 97 (1975) 105
- 502. P.E.Riley, and R.E.Davis, Inorg. Chem., 14 (1975) 2507
- 503. F.A.Cotton, J.M.Troup, W.E.Billups, L.P.Lin and C.V.Smith, J.Orgenometal.Chem., 102 (1975) 345
- 504. V.L. Goedken and Y.-A.Park, J.C.S. Chem. Comm., (1975) 214
- 505. V.L. Goedken, S.-N. Peng and Y.-A. Park, J. Amer. Chem. Soc., 96 (1974) 284
- 506. M.C.Rekowski and D.H.Busch, J.Amer.Chem.Soc., 97 (1975) 2570
- 507. Y.Kubo, L.S.Pu, A.Yamamoto and S.Ikeda, J.Organometal.Chem., 84 (1975) 369
- 508. M.E. Vol'pin, Y.N. Novikov, N.D.Lapkina, V.A. Kasatochkin, Y.T. Struchkov, M.E. Kazakov, R.A. Stukan, V.A. Povitskij, Y.S. Karimov and A.V. Zvarikina, J. Amer. Chem. Soc., 97(1975) 3366
- 509. W.Fink, Helv.Chim.Acta, 58 (1975) 1464
- 510. J.Falbe, J.Organometal.Chem., 94 (1975) 213
- 511. G.I.Danilenko, V.M.Buzashch and S.S.Butsko, Zh.Obshch.Khim., 45 (1975) 480
- 512. M.P.Cooke, Jr., and R.M.Parlman, J.Amer.Chem.Soc., 97 (1975) 6863
- 513. T.Mitsudo, Y.Watanabe, T.Sasaki, H.Nakanishi, M.Yamashita and Y.Takegami, Tetra.Lett., (1975) 3163
- 514. W.Strohmeier and L.Weigelt, J.Organometal.Chem., 86 (1975) C17

190 A. Baba, Y. Chshiro and T. Agawa, J. Organometal. Chem., 87 (1975) 247 515. A. Dondoni and G. Barbaro, J. C. S. Chem. Comm., (1975) 761 516. C.U.Fittman, Jr., L.R.Smith and R.M.Hanes, J.Amer. Chem. Soc., 97 (1975) 2742 517. 518. A.Spencer, J.Organometal.Chem., 93 (1975) 389 A.Dobson and S.D.Robinson, J.Organometal. Chem., 67 (1975) C52 519-520. R. Touroude and F. G. Gault, J.C.S. Chem. Comm., (1975) 154 521. M.Ledoux, F.G.Gault, J.-J.Masini and G.Roussy, J.C.S.Chem.Comm., (1975) 153 522. E.F.Magoon, H.C. Volger, W.W. Stooncer, J.L. van Winkle and L.H. Slaugh, J.Organometal.Chem., 99 (1975) 135 523. V.M. Akhmedov, M.T. Anthony, M.L.H. Green and D.Young, J.C.S. Dalton, (1975) 1412 524. C.U.Pittman, Jr., and L.R.Smith, J.Amer.Chem.Soc., 97 (1975) 1749 H. Behrens, J. Organometal. Chem., 94 (1975) 139 525. 526. R.A. Sokolik, Metody Elemntoorg. Khim., Tipy Metallorg. Soedin. Perekhodnykh. Net., 1 (1975) 19 R.J.Cross, Ann.Rep.Progr.Chem., Sect.A (Phys.Inorg.Chem.), 1973 527. 528. R.J.Cross, Ann.Rep.Progr.Chem., Sect. A (Phys.Inorg.Chem), 71 (1974) 291 J.E.Ellis, J.Organometal.Chem., 86 (1975) 1 529. 530. J.P.Collman, Acc. Chem. Res., 8 (1975) 342 531. H. Vahrenkamp, Angew. Chem., 87 (1975) 363 532. L.P.Yur'eva, Metody Elementoorg.Khim., Tipy Metalloorg.Soedin. Perekhodnykh. Met., 1 (1975) 162 K.G.Caulton, Coord.Chem.Rev., 14 (1975) 317 533. R.Eisenberg and C.D.Neyer, Acc. Chem. Res., 8 (1975) 26 534. D.Sutton, Chem.Soc.Rev., 4 (1975) 443 535. M.I.Bruce and B.L.Goodall, Chem.Hydrazo, Azo and Azoxy Groups, 1 (1975) 259; 536. Ed.S.Patai, Wiley, England. 537 -M.I.Ryginskeya, Metody Elementoorg. Khim., Tipy Metalloorg. Soedin, Perekhodnykh. Met., 1 (1975) 217 538. L. V. Rybin, Metody Elementoorg. Khim., Tipy Metalloorg. Soedin.

Perekhodnykh. Met., 2 (1975) 542

------

- 539. G.Deganello, P.Uguagliati, L.Calligaro, L.Sandrini and F.Zingales, Inorg.Chim.Acta, 13 (1975) 247
- 540. L.P.Yur'eva, Metody Elementoorg.Khim., Tipy Metalloorg.Soedin. Ferekhodnykh, 1 (1975) 384
- 541. T.V.Nikitina, Metody Elementoorg.Khim., Tipy Metalloorg.Soedin. Perekhodnykh.Met., 2 (1975) 585
- 542. W.E.Silverthorn, Adv.Organometl.Chem., 13 (1975) 48
- 543. I.I.Kritskaya, Metody Elementoorg.Khim., Tipy Metalloorg.Soedin. Perekhodnykh Met., 2 (1975) 525
- 544. J.S.Thayer, Adv. Organometal. Chem., 13 (1975) 1
- 545. J. Chatt, J. Organometal. Chem., 100 (1975) 17
- 546. F.A.Cotton, J.Organometal.Chem., 100 (1975) 29
- 547. M.F.Hawthorne, J.Organometal.Chem., 100 (1975) 97
- 548. R.B.King, J.Organometal.Chem., 100 (1975) 111
- 549. M.F.Lappert, J.Organometal.Chem., 100 (1975) 139
- 550. R.Fettit, J.Crganometal.Chem., 100 (1975) 205
- 551. F.G.A.Stone, J.Organometal.Chem., 100 (1975) 257
- 552. G.Wilkinson, J.Organometal. Chem., 100 (1975) 273
- 553. J.D.Jones, R.Pearce and R.Whelan, Ann.Rep.Frogr.Chem., Sect. B, 71 (1975) 171
- 554. A.T.T.Hsieh, Inorg. Chim. Acta., 14 (1975) 87
- 555. T.J.Meyer, Progr. Inorg. Chem., 19 (1975) 2
- 556. Gmelin's Handbook of Inorganic Chemistry, Supplementary Work, Vol 14: Organo Iron Compounds, Part A: Ferrocene, Sect. 1; Ferrocene and Mononuclear Konosubstituted Products, containing Substituted C, H, and/or Halogens (8th Edit.), (1974) 395
- 557. W.P.Griffith, Platinum Metal Reviews, 19 (1975) 60
- 558. G.Dolcetti, M.Ghedini and O.Gandolfi, Chim.Ind.(milan), 57 (1975) 336
- 559. D.Nicholls, The Chemistry of Fe, Co and Ni (Pergamon; Elmsford, N.Y.), 3975
- 560. S.E.Livingstone, The Chemistry of Ru, Rh, Pd, Os, Ir and Pt, (Pergamon, Elmsford, N.Y.),1975

501.	D.L.Kepert and K.Vrieze, Compounds of Transition Metals Involving
	Ketal-Ketal Bonds (Fergemon; Elmsford, N.Y.), 1975
562.	K.J.Klabunde and T.O.Murdock, Chem.Technol. 5 (1975) 624
563.	P.L.Timms, Angew.Chem., Int.Ed.Engl., 12 (1975) 273
564.	R.K.Sheline and H.Mahnke, Angew.Chem., Int.Ed.Engl., 12 (1975) 314
565.	P.S.Skell and M.J.EcGlinchey, Angew.Chem., Int.Ed.Engl., 12 (1975) 1
566.	E.A.Koerner von Gustorf, O.Jaenicke, O. Wolfbeis and C.R.Eady,
	Angew. Chem., Int. Ed. Engl., 12 (1975) 278
567.	J.J.Turner, Angew.Chem., Int.Ed.Engl., 12 (1975) 304
568.	KK.Lin, Diss.Abstr.Int.E, 35 (1975) 5310
569.	A.J.Schultz, Diss.Abstr.Int.B, 35 (1975) 5318
570.	R.G.Komoto, Diss.Abstr.Int.B, 35 (1975) 2658
571.	J.L.McClean, Diss.Abstr.Int.B, 35 (1975) 4862
572.	J.Reed, Jr., Diss.Abstr.Int.B, 35 (1975) 5316
573-	D.G.van Derveer, Diss.Abstr.Int.E, 35 (1975) 5319
574.	R.P. Cheney, Diss. Abstr. Int. B, 35 (1975) 2209
575:	R.S.Case, Diss.Abstr.Int.E, 35 (1975) 3823
576.	M.T.Nocella, Diss.Abstr.Int.E, 35 (1975) 5312
577 -	T.J.Devon, Diss.Abstr.Int.B, 35 (1975) 3825
578.	G. Berens, Diss. Abstr. Int. B, 36 (1975) 231
579•	T.N.Fecoraro, Diss.Abstr.Int.B, 36 (1975) 746
580.	R-L.Farton, Diss.Abstr.Int.B, 35 (1975) 5824
581.	F.Shu, Diss.Abstr.Int.B, 35 (1975) 2105

.

.